No Arabic abstract
We propose a neural network architecture for learning vector representations of hotels. Unlike previous works, which typically only use user click information for learning item embeddings, we propose a framework that combines several sources of data, including user clicks, hotel attributes (e.g., property type, star rating, average user rating), amenity information (e.g., the hotel has free Wi-Fi or free breakfast), and geographic information. During model training, a joint embedding is learned from all of the above information. We show that including structured attributes about hotels enables us to make better predictions in a downstream task than when we rely exclusively on click data. We train our embedding model on more than 40 million user click sessions from a leading online travel platform and learn embeddings for more than one million hotels. Our final learned embeddings integrate distinct sub-embeddings for user clicks, hotel attributes, and geographic information, providing an interpretable representation that can be used flexibly depending on the application. We show empirically that our model generates high-quality representations that boost the performance of a hotel recommendation system in addition to other applications. An important advantage of the proposed neural model is that it addresses the cold-start problem for hotels with insufficient historical click information by incorporating additional hotel attributes which are available for all hotels.
Hierarchical topic models such as the gamma belief network (GBN) have delivered promising results in mining multi-layer document representations and discovering interpretable topic taxonomies. However, they often assume in the prior that the topics at each layer are independently drawn from the Dirichlet distribution, ignoring the dependencies between the topics both at the same layer and across different layers. To relax this assumption, we propose sawtooth factorial topic embedding guided GBN, a deep generative model of documents that captures the dependencies and semantic similarities between the topics in the embedding space. Specifically, both the words and topics are represented as embedding vectors of the same dimension. The topic matrix at a layer is factorized into the product of a factor loading matrix and a topic embedding matrix, the transpose of which is set as the factor loading matrix of the layer above. Repeating this particular type of factorization, which shares components between adjacent layers, leads to a structure referred to as sawtooth factorization. An auto-encoding variational inference network is constructed to optimize the model parameter via stochastic gradient descent. Experiments on big corpora show that our models outperform other neural topic models on extracting deeper interpretable topics and deriving better document representations.
Lawyers and judges spend a large amount of time researching the proper legal authority to cite while drafting decisions. In this paper, we develop a citation recommendation tool that can help improve efficiency in the process of opinion drafting. We train four types of machine learning models, including a citation-list based method (collaborative filtering) and three context-based methods (text similarity, BiLSTM and RoBERTa classifiers). Our experiments show that leveraging local textual context improves recommendation, and that deep neural models achieve decent performance. We show that non-deep text-based methods benefit from access to structured case metadata, but deep models only benefit from such access when predicting from context of insufficient length. We also find that, even after extensive training, RoBERTa does not outperform a recurrent neural model, despite its benefits of pretraining. Our behavior analysis of the RoBERTa model further shows that predictive performance is stable across time and citation classes.
This paper describes our submission for the SemEval 2018 Task 7 shared task on semantic relation extraction and classification in scientific papers. We extend the end-to-end relation extraction model of (Miwa and Bansal) with enhancements such as a character-level encoding attention mechanism on selecting pretrained concept candidate embeddings. Our official submission ranked the second in relation classification task (Subtask 1.1 and Subtask 2 Senerio 2), and the first in the relation extraction task (Subtask 2 Scenario 1).
The effectiveness of Neural Information Retrieval (Neu-IR) often depends on a large scale of in-domain relevance training signals, which are not always available in real-world ranking scenarios. To democratize the benefits of Neu-IR, this paper presents MetaAdaptRank, a domain adaptive learning method that generalizes Neu-IR models from label-rich source domains to few-shot target domains. Drawing on source-domain massive relevance supervision, MetaAdaptRank contrastively synthesizes a large number of weak supervision signals for target domains and meta-learns to reweight these synthetic weak data based on their benefits to the target-domain ranking accuracy of Neu-IR models. Experiments on three TREC benchmarks in the web, news, and biomedical domains show that MetaAdaptRank significantly improves the few-shot ranking accuracy of Neu-IR models. Further analyses indicate that MetaAdaptRank thrives from both its contrastive weak data synthesis and meta-reweighted data selection. The code and data of this paper can be obtained from https://github.com/thunlp/MetaAdaptRank.
Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as ImageNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated cross-attention models. The representations also enable cross-modality search with complex text and text + image queries.