Do you want to publish a course? Click here

On Dimension-free Tail Inequalities for Sums of Random Matrices and Applications

66   0   0.0 ( 0 )
 Added by Min-Hsiu Hsieh
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we present a new framework to obtain tail inequalities for sums of random matrices. Compared with existing works, our tail inequalities have the following characteristics: 1) high feasibility--they can be used to study the tail behavior of various matrix functions, e.g., arbitrary matrix norms, the absolute value of the sum of the sum of the $j$ largest singular values (resp. eigenvalues) of complex matrices (resp. Hermitian matrices); and 2) independence of matrix dimension --- they do not have the matrix-dimension term as a product factor, and thus are suitable to the scenario of high-dimensional or infinite-dimensional random matrices. The price we pay to obtain these advantages is that the convergence rate of the resulting inequalities will become slow when the number of summand random matrices is large. We also develop the tail inequalities for matrix random series and matrix martingale difference sequence. We also demonstrate usefulness of our tail bounds in several fields. In compressed sensing, we employ the resulted tail inequalities to achieve a proof of the restricted isometry property when the measurement matrix is the sum of random matrices without any assumption on the distributions of matrix entries. In probability theory, we derive a new upper bound to the supreme of stochastic processes. In machine learning, we prove new expectation bounds of sums of random matrices matrix and obtain matrix approximation schemes via random sampling. In quantum information, we show a new analysis relating to the fractional cover number of quantum hypergraphs. In theoretical computer science, we obtain randomness-efficient samplers using matrix expander graphs that can be efficiently implemented in time without dependence on matrix dimensions.



rate research

Read More

We extend the random characteristics approach to Wigner matrices whose entries are not required to have a normal distribution. As an application, we give a simple and fully dynamical proof of the weak local semicircle law in the bulk.
179 - Paul Bourgade 2018
We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erd{H o}s-Schlein-Yau dynamic approach, its application to Wigner matrices, and extension to other mean-field models. We then introduce random band matrices and the problem of their Anderson transition. We finally describe a method to obtain delocalization and universality in some sparse regimes, highlighting the role of quantum unique ergodicity.
We review a recently introduced effective graph approximation of causal dynamical triangulations (CDT), the multigraph ensemble. We argue that it is well suited for analytical computations and that it captures the physical degrees of freedom which are important for the reduction of the spectral dimension as observed in numerical simulations of CDT. In addition multigraph models allow us to study the relationship between the spectral dimension and the Hausdorff dimension, thus establishing a link to other approaches to quantum gravity
106 - Nikita Zhivotovskiy 2021
We consider the deviation inequalities for the sums of independent $d$ by $d$ random matrices, as well as rank one random tensors. Our focus is on the non-isotropic case and the bounds that do not depend explicitly on the dimension $d$, but rather on the effective rank. In a rather elementary and unified way, we show the following results: 1) A deviation bound for the sums of independent positive-semi-definite matrices of any rank. This result generalizes the dimension-free bound of Koltchinskii and Lounici [Bernoulli, 23(1): 110-133, 2017] on the sample covariance matrix in the sub-Gaussian case. 2) Dimension-free bounds for the operator norm of the sums of random tensors of rank one formed either by sub-Gaussian or log-concave random vectors. This extends the result of Guedon and Rudelson [Adv. in Math., 208: 798-823, 2007]. 3) A non-isotropic version of the result of Alesker [Geom. Asp. of Funct. Anal., 77: 1--4, 1995] on the concentration of the norm of sub-exponential random vectors. 4) A dimension-free lower tail bound for sums of positive semi-definite matrices with heavy-tailed entries, sharpening the bound of Oliveira [Prob. Th. and Rel. Fields, 166: 1175-1194, 2016]. Our approach is based on the duality formula between entropy and moment generating functions. In contrast to the known proofs of dimension-free bounds, we avoid Talagrands majorizing measure theorem, as well as generic chaining bounds for empirical processes. Some of our tools were pioneered by O. Catoni and co-authors in the context of robust statistical estimation.
We give an asymptotic evaluation of the complexity of spherical p-spin spin-glass models via random matrix theory. This study enables us to obtain detailed information about the bottom of the energy landscape, including the absolute minimum (the ground state), the other local minima, and describe an interesting layered structure of the low critical values for the Hamiltonians of these models. We also show that our approach allows us to compute the related TAP-complexity and extend the results known in the physics literature. As an independent tool, we prove a LDP for the k-th largest eigenvalue of the GOE, extending the results of Ben Arous, Dembo and Guionnett (2001).

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا