No Arabic abstract
We give an asymptotic evaluation of the complexity of spherical p-spin spin-glass models via random matrix theory. This study enables us to obtain detailed information about the bottom of the energy landscape, including the absolute minimum (the ground state), the other local minima, and describe an interesting layered structure of the low critical values for the Hamiltonians of these models. We also show that our approach allows us to compute the related TAP-complexity and extend the results known in the physics literature. As an independent tool, we prove a LDP for the k-th largest eigenvalue of the GOE, extending the results of Ben Arous, Dembo and Guionnett (2001).
We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erd{H o}s-Schlein-Yau dynamic approach, its application to Wigner matrices, and extension to other mean-field models. We then introduce random band matrices and the problem of their Anderson transition. We finally describe a method to obtain delocalization and universality in some sparse regimes, highlighting the role of quantum unique ergodicity.
We consider the real eigenvalues of an $(N times N)$ real elliptic Ginibre matrix whose entries are correlated through a non-Hermiticity parameter $tau_Nin [0,1]$. In the almost-Hermitian regime where $1-tau_N=Theta(N^{-1})$, we obtain the large-$N$ expansion of the mean and the variance of the number of the real eigenvalues. Furthermore, we derive the limiting empirical distributions of the real eigenvalues, which interpolate the Wigner semicircle law and the uniform distribution, the restriction of the elliptic law on the real axis. Our proofs are based on the skew-orthogonal polynomial representation of the correlation kernel due to Forrester and Nagao.
We extend the random characteristics approach to Wigner matrices whose entries are not required to have a normal distribution. As an application, we give a simple and fully dynamical proof of the weak local semicircle law in the bulk.
This paper considers the empirical spectral measure of a power of a random matrix drawn uniformly from one of the compact classical matrix groups. We give sharp bounds on the $L_p$-Wasserstein distances between this empirical measure and the uniform measure on the circle, which show a smooth transition in behavior when the power increases and yield rates on almost sure convergence when the dimension grows. Along the way, we prove the sharp logarithmic Sobolev inequality on the unitary group.
We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general beta siblings converge to Sine_beta, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine_beta is continuous in the gap size and $beta$, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at beta=2.