No Arabic abstract
By a result of Schur [J. Reine Angew. Math. 1911], the entrywise product $M circ N$ of two positive semidefinite matrices $M,N$ is again positive. Vybiral [Adv. Math. 2020] improved on this by showing the uniform lower bound $M circ overline{M} geq E_n / n$ for all $n times n$ real or complex correlation matrices $M$, where $E_n$ is the all-ones matrix. This was applied to settle a conjecture of Novak [J. Complexity 1999] and to positive definite functions on groups. Vybiral (in his original preprint) asked if one can obtain similar uniform lower bounds for higher entrywise powers of $M$, or for $M circ N$ when $N eq M, overline{M}$. A natural third question is to obtain a tighter lower bound that need not vanish as $n to infty$, i.e. over infinite-dimensional Hilbert spaces. In this note, we affirmatively answer all three questions by extending and refining Vybirals result to lower-bound $M circ N$, for arbitrary complex positive semidefinite matrices $M, N$. Specifically: we provide tight lower bounds, improving on Vybirals bounds. Second, our proof is conceptual (and self-contained), providing a natural interpretation of these improved bounds via tracial Cauchy-Schwarz inequalities. Third, we extend our tight lower bounds to Hilbert-Schmidt operators. As an application, we settle Open Problem 1 of Hinrichs-Krieg-Novak-Vybiral [J. Complexity, in press], which yields improvements in the error bounds in certain tensor product (integration) problems.
We prove $L^p$ lower bounds for Coulomb energy for radially symmetric functions in $dot H^s(R^3)$ with $frac 12 <s<frac{3}{2}$. In case $frac 12 <s leq 1$ we show that the lower bounds are sharp.
Given two intervals $I, J subset mathbb{R}$, we ask whether it is possible to reconstruct a real-valued function $f in L^2(I)$ from knowing its Hilbert transform $Hf$ on $J$. When neither interval is fully contained in the other, this problem has a unique answer (the nullspace is trivial) but is severely ill-posed. We isolate the difficulty and show that by restricting $f$ to functions with controlled total variation, reconstruction becomes stable. In particular, for functions $f in H^1(I)$, we show that $$ |Hf|_{L^2(J)} geq c_1 exp{left(-c_2 frac{|f_x|_{L^2(I)}}{|f|_{L^2(I)}}right)} | f |_{L^2(I)} ,$$ for some constants $c_1, c_2 > 0$ depending only on $I, J$. This inequality is sharp, but we conjecture that $|f_x|_{L^2(I)}$ can be replaced by $|f_x|_{L^1(I)}$.
The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp boundsare obtained for both the fractional integral operators and the associated fractional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal version of the extrapolation theorem of Rubio de Francia and characterizations of two-weight norm inequalities.
We study the $2k$-th discrete moment of the derivative of the Riemann zeta-function at nontrivial zeros to establish sharp lower bounds for all real $k geq 0$ under the Riemann hypothesis (RH).
Let $A$ be a compact set in $mathbb{R}$, and $E=A^dsubset mathbb{R}^d$. We know from the Mattila-Sjolins theorem if $dim_H(A)>frac{d+1}{2d}$, then the distance set $Delta(E)$ has non-empty interior. In this paper, we show that the threshold $frac{d+1}{2d}$ can be improved whenever $dge 5$.