Do you want to publish a course? Click here

Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems

348   0   0.0 ( 0 )
 Added by Tobias Holicki
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We derive novel criteria for designing stabilizing dynamic output-feedback controllers for a class of aperiodic impulsive systems subject to a range dwell-time condition. Our synthesis conditions are formulated as clock-dependent linear matrix inequalities (LMIs) which can be solved numerically, e.g., by using matrix sum-of-squares relaxation methods. We show that our results allow us to design dynamic output-feedback controllers for aperiodic sample-data systems and illustrate the proposed approach by means of a numerical example.



rate research

Read More

The dual iteration was introduced in a conference paper in 1997 by Iwasaki as an iterative and heuristic procedure for the challenging and non-convex design of static output-feedback controllers. We recall in detail its essential ingredients and go beyond the work of Iwasaki by demonstrating that the framework of linear fractional representations allows for a seamless extension the dual iteration to output-feedback designs of tremendous practical relevance such as the design of robust or robust gain-scheduled controllers. In the paper of Iwasaki the dual iteration is solely based on, and motivated by algebraic manipulations resulting from the elimination lemma. We provide a novel control theoretic interpretation of the individual steps, which paves the way for further generalizations of the powerful scheme to situations where the elimination lemma is not applicable. Exemplary, we extend the dual iteration to the multi-objective design of static output-feedback $H_infty$-controllers, which guarantee that the closed-loop poles are contained in an a priori specified generalized stability region. We demonstrate the approach with numerous numerical examples inspired from the literature.
42 - Lucas Brivadis 2019
Control-affine output systems generically present observability singularities, i.e. inputs that make the system unobservable. This proves to be a difficulty in the context of output feedback stabilization, where this issue is usually discarded by uniform observability assumptions for state feedback stabilizable systems. Focusing on state feedback stabilizable bilinear control systems with linear output, we use a transversality approach to provide perturbations of the stabilizing state feedback law, in order to make our system observable in any time even in the presence of singular inputs.
This paper studies a class of partially observed Linear Quadratic Gaussian (LQG) problems with unknown dynamics. We establish an end-to-end sample complexity bound on learning a robust LQG controller for open-loop stable plants. This is achieved using a robust synthesis procedure, where we first estimate a model from a single input-output trajectory of finite length, identify an H-infinity bound on the estimation error, and then design a robust controller using the estimated model and its quantified uncertainty. Our synthesis procedure leverages a recent control tool called Input-Output Parameterization (IOP) that enables robust controller design using convex optimization. For open-loop stable systems, we prove that the LQG performance degrades linearly with respect to the model estimation error using the proposed synthesis procedure. Despite the hidden states in the LQG problem, the achieved scaling matches previous results on learning Linear Quadratic Regulator (LQR) controllers with full state observations.
Output feedback stabilization of control systems is a crucial issue in engineering. Most of these systems are not uniformly observable, which proves to be a difficulty to move from state feedback stabilization to dynamic output feedback stabilization. In this paper, we present a methodology to overcome this challenge in the case of dissipative systems by requiring only target detectability. These systems appear in many physical systems and we provide various examples and applications of the result.
This paper addresses the problem of positive consensus of directed multi-agent systems with observer-type output-feedback protocols. More specifically, directed graph is used to model the communication topology of the multi-agent system and linear matrix inequalities (LMIs) are used in the consensus analysis in this paper. Using positive systems theory and graph theory, a convex programming algorithm is developed to design appropriate protocols such that the multi-agent system is able to reach consensus with its state trajectory always remaining in the non-negative orthant. Finally, numerical simulations are given to illustrate the effectiveness of the derived theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا