No Arabic abstract
Comet 21P/Giacobini-Zinner (hereafter, comet 21P/G-Z) is a Jupiter-family comet and a parent comet of the October Draconids meteor shower. If meteoroids originating from a Jupiter-family comet contain complex organic molecules, such as amino acids, they are essential pieces of the puzzle regarding the origin of life on Earth. We observed comet 21P/G-Z in the mid-infrared wavelength region using the Cooled Mid-infrared Camera and Spectrometer (COMICS) on the 8.2 m Subaru Telescope on UT 2005 July 5. Here, we report the unidentified infrared (UIR) emission features of comet 21P/G-Z, which are likely due to complex organic molecules (both aliphatic and aromatic hydrocarbons), and the thermal emission from amorphous/crystalline silicates and amorphous carbon grains in its mid-infrared low-resolution spectrum. The UIR features at ~8.2 micron, ~8.5 micron, and ~11.2 micron found in the spectrum of comet 21P/G-Z could be attributed to polycyclic aromatic hydrocarbons (or hydrogenated amorphous carbons) contaminated by N- or O-atoms, although part of the feature at ~11.2 micron comes from crystalline olivine. The other feature at ~9.2 micron might originate from aliphatic hydrocarbons. Comet 21P/G-Z is enriched in complex organic molecules. Considering that the derived mass fraction of crystalline silicates in comet 21P/G-Z is typical of comets, we propose that the comet originated from a circumplanetary disk of giant planets (similar to Jupiter and Saturn) where was warmer than the typical comet-forming region (5-30 au from the Sun) and was suitable for the formation of complex organic molecules. Comets from circumplanetary disks might be enriched in complex organic molecules, such as comet 21P/G-Z, and may have provided pre-biotic molecules to ancient Earth by direct impact or meteor showers.
We report results of polarimetric observations of comet 21P/Giacobini-Zinner made at phase angles, {alpha}=76-78 deg, between 10 and 17 of September 2018, and compare them with previous measurements. We find significant variations in the polarimetric signals that appear consistent with those reported previously. These variations and subsequent modeling suggest that the particles in the coma are replenished within a period of approximately one day. This period is significantly shorter for highly absorbing carbonaceous particles than for non-absorbing Mg-rich silicate particles. Such a difference in the relative abundances of these components can lead to variations in the polarization response of the coma. The strong positive polarization in the subsolar direction suggests a large relative abundance of carbonaceous material, which may be an indicator of jet-type activity.
We report on photometry and high resolution spectroscopy of the chemically peculiar Jupiter-family Comet (hereafter JFC) 21P/Giacobini-Zinner. Comet 21P is a well known member of the carbon-chain depleted family but displays also a depletion of amines. We monitored continuously the comet over more than seven months with the two TRAPPIST telescopes (TN and TS), covering a large heliocentric distance range from 1.60 au inbound to 2.10 au outbound with a perihelion at 1.01 au on September 10, 2018. We computed and followed the evolution of the dust (represented by Af$rho$) and gas production rates of the daughter species OH, NH, CN, C$_3$, and C$_2$ and their relative abundances to OH and to CN over the comet orbit. We compared them to those measured in the previous apparitions. The activity of the comet and its water production rate reached a maximum of (3.72$pm$0.07)$times$10$^{28}$ molec/s on August 17, 2018 (r$_h$=1.07 au), 24 days before perihelion. The peak value of A(0)f$rho$ was reached on the same date (1646$pm$13) cm in the red filter. The abundance ratios of the various species are remarkably constant over a large range of heliocentric distances, before and after perihelion, showing a high level of homogeneity of the ices in the surface of the nucleus. The behaviour and level of the activity of the comet is also remarkably similar over the last five orbits. About the coma dust colour, 21P shows reflectively gradients similar to JFCs. We obtained a high resolution spectrum of 21P with UVES at ESO VLT one week after perihelion. Using the CN B-X (0,0) violet band, we measured $^{12}$C/$^{13}$C and $^{14}$N/$^{15}$N isotopic ratios of 100$pm$10 and 145$pm$10, respectively, both in very good agreement with what is usually found in comets.
Jovian Trojan D-type asteroids have mid-infrared emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 {mu}m thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis suggests the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74 to 0.83, are systematically lower than the Jupiter-family comet population mean of 1.03+/-0.11, derived from 16- and 22-{mu}m photometry. When the spectra are normalized by the NEATM model, a weak 10-{mu}m silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well as those seen in the spectra of seven comet comae. The comet comae present silicate features with two distinct shapes, either trapezoidal, or more rounded. The surfaces of Tempel 2, Arend-Rigaux, and Hektor best agree with the comae that present trapezoidal features. An emissivity minimum at 15 {mu}m, present in the spectra of Tempel 2, Arend-Rigaux, Hektor, and Agamemnon, is also described, the origin of which remains unidentified. The compositional similarity between D-type asteroids and comets is discussed, and our data supports the hypothesis that they have similar origins in the early Solar System.
The Infrared Space Observatory (ISO) has provided the first complete mid-IR spectra for a wide range of objects. Almost all of these spectra are dominated by the well-known infrared emission features at 3.3, 6.2, 7.7, and 11.2 $mu$m, the so-called Unidentified Infra-Red (UIR) features. Besides the major features, there is an array of minor features and broad plateaux stretching from 3 to 20 $mu$m which reveal subtle details of conditions in the emission zones and properties of the carriers. Generally attributed to the vibrational relaxation of UV-pumped Polycyclic Aromatic Hydrocarbon molecules (PAHs) containing some 50--100 C-atoms, these UIR spectra are a treasure trove of information. The ISO spectra have, for the first time, allowed a systematic analysis of the spectral characteristics of the UIR features in a wide variety of environments. The peak positions, profiles, and relative strengths of the major features vary from source to source and spatially within sources. These specific profiles are not unique to certain object types but can occur within each individual source. Here, we review ISO and recent ground-based observations and assess some of their implications.
We present mid-infrared observations of comet P/2016 BA14 (PANSTARRS), which were obtained on UT 2016 March 21.3 at heliocentric and geocentric distances of 1.012 au and 0.026 au, respectively, approximately 30 hours before its closest approach to Earth (0.024 au) on UT 2016 March 22.6. Low-resolution ($lambda$/$Delta lambda$~250) spectroscopic observations in the N-band and imaging observations with four narrow-band filters (centered at 8.8, 12.4, 17.7 and 18.8 $mu$m) in the N- and Q-bands were obtained using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) mounted on the 8.2-m Subaru telescope atop Maunakea, Hawaii. The observed spatial profiles of P/2016 BA14 at different wavelengths are consistent with a point-spread function. Owing to the close approach of the comet to the Earth, the observed thermal emission from the comet is dominated by the thermal emission from its nucleus rather than its dust coma. The observed spectral energy distribution of the nucleus at mid-infrared wavelengths is consistent with a Planck function at temperature T~350 K, with the effective diameter of P/2016 BA14 estimated as ~0.8 km (by assuming an emissivity of 0.97). The normalized emissivity spectrum of the comet exhibits absorption-like features that are not reproduced by the anhydrous minerals typically found in cometary dust coma, such as olivine and pyroxene. Instead, the spectral features suggest the presence of large grains of phyllosilicate minerals and organic materials. Thus, our observations indicate that an inactive small body covered with these processed materials is a possible end state of comets.