We develop general tools to characterise and efficiently compute relevant observables of multimode $N$-photon states generated in non-linear decays in one-dimensional waveguides. We then consider optical interferometry in a Mach-Zender interferometer where a $d$-mode photonic state enters in each arm of the interferometer. We derive a simple expression for the Quantum Fisher Information in terms of the average photon number in each mode, and show that it can be saturated by number-resolved photon measurements that do not distinguish between the different $d$ modes.
Fock states are a fundamental resource for many quantum technologies such as quantum metrology. While much progress has been made in single-photon source technologies, preparing Fock states with large photon number remains challenging. We present and analyze a bootstrapped approach for non-deterministically preparing large photon-number Fock states by iteratively fusing smaller Fock states on a beamsplitter. We show that by employing state recycling we are able to exponentially improve the preparation rate over conventional schemes, allowing the efficient preparation of large Fock states. The scheme requires single-photon sources, beamsplitters, number-resolved photo-detectors, fast-feedforward, and an optical quantum memory.
Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of $N$ entangled photons provides up to a $sqrt{N}$ enhancement in phase sensitivity compared to a classical probe of the same energy. Here, we employ high-gain parametric down-conversion sources and photon-number-resolving detectors to perform interferometry with heralded quantum probes of sizes up to $N=8$ (i.e. measuring up to 16-photon coincidences). Our probes are created by injecting heralded photon-number states into an interferometer, and in principle provide quantum-enhanced phase sensitivity even in the presence of significant optical loss. Our work paves the way towards quantum-enhanced interferometry using large entangled photonic states.
We propose a class of path-entangled photon Fock states for robust quantum optical metrology, imaging, and sensing in the presence of loss. We model propagation loss with beam-splitters and derive a reduced density matrix formalism from which we examine how photon loss affects coherence. It is shown that particular entangled number states, which contain a special superposition of photons in both arms of a Mach-Zehnder interferometer, are resilient to environmental decoherence. We demonstrate an order of magnitude greater visibility with loss, than possible with N00N states. We also show that the effectiveness of a detection scheme is related to super-resolution visibility.
Probabilistic amplification through photon addition, at the output of an Mach-Zehnder interferometer is discussed for a coherent input state. When a metric of signal to noise ratio is considered, nondeterministic, noiseless amplification of a coherent state shows improvement over a standard coherent state, for the general addition of $m$ photons. The efficiency of realizable implementation of photon addition is also considered and shows how the collected statistics of a post selected state, depend on this efficiency. We also consider the effects of photon loss and inefficient detectors.
Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this paper, we identify the major sources of imperfection an optical sensor: input state preparation inefficiency, sensor losses, and detector inefficiency. The second of these has received much attention; we show that it is the least damaging to surpassing the standard quantum limit in a optical interferometric sensor. Further, we show that photonic states that can be prepared in the laboratory using feasible resources allow a measurement strategy using photon-number-resolving detectors that not only attains the Heisenberg limit for phase estimation in the absence of losses, but also deliver close to the maximum possible precision in realistic scenarios including losses and inefficiencies. In particular, we give bounds for the trade off between the three sources of imperfection that will allow true quantum-enhanced optical metrology.
M. Perarnau-Llobet
,A. Gonzalez-Tudela
,J. I. Cirac
.
(2019)
.
"Multimode Fock states with large photon number: effective descriptions and applications in quantum metrology"
.
Marti Perarnau-Llobet
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا