Do you want to publish a course? Click here

Efficient recycling strategies for preparing large Fock states from single-photon sources --- Applications to quantum metrology

72   0   0.0 ( 0 )
 Added by Keith Motes
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fock states are a fundamental resource for many quantum technologies such as quantum metrology. While much progress has been made in single-photon source technologies, preparing Fock states with large photon number remains challenging. We present and analyze a bootstrapped approach for non-deterministically preparing large photon-number Fock states by iteratively fusing smaller Fock states on a beamsplitter. We show that by employing state recycling we are able to exponentially improve the preparation rate over conventional schemes, allowing the efficient preparation of large Fock states. The scheme requires single-photon sources, beamsplitters, number-resolved photo-detectors, fast-feedforward, and an optical quantum memory.



rate research

Read More

We develop general tools to characterise and efficiently compute relevant observables of multimode $N$-photon states generated in non-linear decays in one-dimensional waveguides. We then consider optical interferometry in a Mach-Zender interferometer where a $d$-mode photonic state enters in each arm of the interferometer. We derive a simple expression for the Quantum Fisher Information in terms of the average photon number in each mode, and show that it can be saturated by number-resolved photon measurements that do not distinguish between the different $d$ modes.
We present rigorous and intuitive master equation models to study on-demand single photon sources from pulse-excited quantum dots coupled to cavities. We consider three methods of source excitation: resonant pi-pulse, off-resonant phonon-assisted inversion, and two-photon excitation of a biexciton-exciton cascade, and investigate the effect of the pulse excitation process on the quantum indistinguishability, efficiency, and purity of emitted photons. By explicitly modelling the time-dependent pulsed excitation process in a manner which captures non-Markovian effects associated with coupling to photon and phonon reservoirs, we find that photons of near-unity indistinguishability can be emitted with over 90% efficiency for all these schemes, with the off-resonant schemes not necessarily requiring polarization filtering due to the frequency separation of the excitation pulse, and allowing for very high single photon purities. Furthermore, the off-resonant methods are shown to be robust over certain parameter regimes, with less stringent requirements on the excitation pulse duration in particular. We also derive a semi-analytical simplification of our master equation for the off-resonant drive, which gives insight into the important role that exciton-phonon decoupling for a strong drive plays in the off-resonant phonon-assisted inversion process
We propose a class of path-entangled photon Fock states for robust quantum optical metrology, imaging, and sensing in the presence of loss. We model propagation loss with beam-splitters and derive a reduced density matrix formalism from which we examine how photon loss affects coherence. It is shown that particular entangled number states, which contain a special superposition of photons in both arms of a Mach-Zehnder interferometer, are resilient to environmental decoherence. We demonstrate an order of magnitude greater visibility with loss, than possible with N00N states. We also show that the effectiveness of a detection scheme is related to super-resolution visibility.
A BosonSampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal non-classical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources based on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. BosonSampling with only single-photon input has thus never been realised. Here, we report on a BosonSampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially-indistinguishable single-photons, with a single-photon purity $1{-}g^{(2)}(0)$ of $0.990{pm}0.001$, interfering in a linear optics network. Our demultiplexed source is between one and two orders-of-magnitude more efficient than current heralded multi-photon sources based on spontaneous parametric downconversion, allowing us to complete the BosonSampling experiment faster than previous equivalent implementations.
Advanced quantum technologies, as well as fundamental tests of quantum physics, crucially require the interference of multiple single photons in linear-optics circuits. This interference can result in the bunching of photons into higher Fock states, leading to a complex bosonic behaviour. These challenging tasks timely require to develop collective criteria to benchmark many independent initial resources. Here we determine whether n independent imperfect single photons can ultimately bunch into the Fock state $|n rangle$. We thereby introduce an experimental Fock-state bunching capability for single-photon sources, which uses phase-space interference for extreme bunching events as a quantifier. In contrast to autocorrelation functions, this operational approach takes into account not only residual multi-photon components but also vacuum admixture and the dispersion of the individual photon statistics. We apply this approach to high-purity single photons generated from an optical parametric oscillator and show that they can lead to a Fock-state capability of at least 14. Our work demonstrates a novel collective benchmark for single-photon sources and their use in subsequent stringent applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا