Do you want to publish a course? Click here

Heap and Ternary Self-Distributive Cohomology

155   0   0.0 ( 0 )
 Added by Mohamed Elhamdadi
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Heaps are para-associative ternary operations bijectively exemplified by groups via the operation $(x,y,z) mapsto x y^{-1} z$. They are also ternary self-distributive, and have a diagrammatic interpretation in terms of framed links. Motivated by these properties, we define para-associative and heap cohomology theories and also a ternary self-distributive cohomology theory with abelian heap coefficients. We show that one of the heap cohomologies is related to group cohomology via a long exact sequence. Moreover we construct maps between second cohomology groups of normalized group cohomology and heap cohomology, and show that the latter injects into the ternary self-distributive second cohomology group. We proceed to study heap objects in symmetric monoidal categories providing a characterization of pointed heaps as involutory Hopf monoids in the given category. Finally we prove that heap objects are also categorically self-distributive in an appropriate sense.



rate research

Read More

We investigate constructions of higher arity self-distributive operations, and give relations between cohomology groups corresponding to operations of different arities. For this purpose we introduce the notion of mutually distributive $n$-ary operations generalizing those for the binary case, and define a cohomology theory labeled by these operations. A geometric interpretation in terms of framed links is described, with the scope of providing algebraic background of constructing $2$-cocycles for framed link invariants. This theory is also studied in the context of symmetric monoidal categories. Examples from Lie algebras, coalgebras and Hopf algebras are given.
140 - Emanuele Zappala 2021
The ribbon cocycle invariant is defined by means of a partition function using ternary cohomology of self-distributive structures (TSD) and colorings of ribbon diagrams of a framed link, following the same paradigm introduced by Carter, Jelsovsky, Kamada, Langfor and Saito in Transactions of the American Mathematical Society 2003;355(10):3947-89, for the quandle cocycle invariant. In this article we show that the ribbon cocycle invariant is a quantum invariant. We do so by constructing a ribbon category from a TSD set whose twisting and braiding morphisms entail a given TSD $2$-cocycle. Then we show that the quantum invariant naturally associated to this braided category coincides with the cocycle invariant. We generalize this construction to symmetric monoidal categories and provide classes of examples obtained from Hopf monoids and Lie algebras. We further introduce examples from Hopf-Frobenius algebras, objects studied in quantum computing.
A heap is a set with a certain ternary operation that is self-distributive (TSD) and exemplified by a group with the operation $(x,y,z)mapsto xy^{-1}z$. We introduce and investigate framed link invariants using heaps. In analogy with the knot group, we define the fundamental heap of framed links using group presentations. The fundamental heap is determined for some classes of links such as certain families of torus and pretzel links. We show that for these families of links there exist epimorphisms from fundamental heaps to Vinberg and Coxeter groups, implying that corresponding groups are infinite. A relation to the Wirtinger presentation is also described. The cocycle invariant is defined using ternary self-distributive (TSD) cohomology, by means of a state sum that uses ternary heap $2$-cocycles as weights. It is shown that the cohomology splits into two types, called degenerate and nondegenerate, and that the degenerate part is one dimensional. Subcomplexes are constructed based on group cosets, that allow computations of the nondegenerate part. We apply colorings inferred from fundamental heaps to compute cocycle invariants, and prove that the invariant values can be used to derive algebraic properties of the cohomology.
We construct ternary self-distributive (TSD) objects from compositions of binary Lie algebras, $3$-Lie algebras and, in particular, ternary Nambu-Lie algebras. We show that the structures obtained satisfy an invertibility property resembling that of racks. We prove that these structures give rise to Yang-Baxter operators in the tensor product of the base vector space and, upon defining suitable twisting isomorphisms, we obtain representations of the infinite (framed) braid group. We use these results to construct invariants of (framed) links. We consider examples for low-dimensional Lie algebras, where the ternary bracket is defined by composition of the binary ones, along with simple $3$-Lie algebras, and their applications to some classes of links.
115 - P. Hu , I. Kriz , A. A. Voronov 2003
Let an n-algebra mean an algebra over the chain complex of the little n-cubes operad. We give a proof of Kontsevichs conjecture, which states that for a suitable notion of Hochschild cohomology in the category of n-algebras, the Hochschild cohomology complex of an n-algebra is an (n+1)-algebra. This generalizes a conjecture by Deligne for n=1, now proven by several authors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا