No Arabic abstract
In this paper, we describe sufficient conditions when block-diagonal solutions to Lyapunov and $mathcal{H}_{infty}$ Riccati inequalities exist. In order to derive our results, we define a new type of comparison systems, which are positive and are computed using the state-space matrices of the original (possibly nonpositive) systems. Computing the comparison system involves only the calculation of $mathcal{H}_{infty}$ norms of its subsystems. We show that the stability of this comparison system implies the existence of block-diagonal solutions to Lyapunov and Riccati inequalities. Furthermore, our proof is constructive and the overall framework allows the computation of block-diagonal solutions to these matrix inequalities with linear algebra and linear programming. Numerical examples illustrate our theoretical results.
In this paper, we derive sufficient conditions on drift matrices under which block-diagonal solutions to Lyapunov inequalities exist. The motivation for the problem comes from a recently proposed basis pursuit algorithm. In particular, this algorithm can provide approximate solutions to optimisation programmes with constraints involving Lyapunov inequalities using linear or second order cone programming. This algorithm requires an initial feasible point, which we aim to provide in this paper. Our existence conditions are based on the so-called $mathcal{H}$ matrices. We also establish a link between $mathcal{H}$ matrices and an application of a small gain theorem to the drift matrix. We finally show how to construct these solutions in some cases without solving the full Lyapunov inequality.
Output-based controllers are known to be fragile with respect to model uncertainties. The standard $mathcal{H}_{infty}$-control theory provides a general approach to robust controller design based on the solution of the $mathcal{H}_{infty}$-Riccati equations. In view of stabilizing incompressible flows in simulations, two major challenges have to be addressed: the high-dimensional nature of the spatially discretized model and the differential-algebraic structure that comes with the incompressibility constraint. This work demonstrates the synthesis of low-dimensional robust controllers with guaranteed robustness margins for the stabilization of incompressible flow problems. The performance and the robustness of the reduced-order controller with respect to linearization and model reduction errors are investigated and illustrated in numerical examples.
This paper deals with the distributed $mathcal{H}_2$ optimal control problem for linear multi-agent systems. In particular, we consider a suboptimal version of the distributed $mathcal{H}_2$ optimal control problem. Given a linear multi-agent system with identical agent dynamics and an associated $mathcal{H}_2$ cost functional, our aim is to design a distributed diffusive static protocol such that the protocol achieves state synchronization for the controlled network and such that the associated cost is smaller than an a priori given upper bound. We first analyze the $mathcal{H}_2$ performance of linear systems and then apply the results to linear multi-agent systems. Two design methods are provided to compute such a suboptimal distributed protocol. For each method, the expression for the local control gain involves a solution of a single Riccati inequality of dimension equal to the dimension of the individual agent dynamics, and the smallest nonzero and the largest eigenvalue of the graph Laplacian.
We prove an existence result for the principal-agent problem with adverse selection under general assumptions on preferences and allocation spaces. Instead of assuming that the allocation space is finite-dimensional or compact, we consider a more general coercivity condition which takes into account the principals cost and the agents preferences. Our existence proof is simple and flexible enough to adapt to partial participation models as well as to the case of type-dependent budget constraints.
This paper examines the $mathcal{H}_infty$ performance problem of the edge agreement protocol for networks of agents operating on independent time scales, connected by weighted edges, and corrupted by exogenous disturbances. $mathcal{H}_infty$-norm expressions and bounds are computed that are then used to derive new insights on network performance in terms of the effect of time scales and edge weights on disturbance rejection. We use our bounds to formulate a convex optimization problem for time scale and edge weight selection. Numerical examples are given to illustrate the applicability of the derived $mathcal{H}_infty$-norm bound expressions, and the optimization paradigm is illustrated via a formation control example involving non-homogeneous agents.