Do you want to publish a course? Click here

Stabilizing Open Quantum Batteries by Sequential Measurements

76   0   0.0 ( 0 )
 Added by Stefano Gherardini
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A quantum battery is a work reservoir that stores energy in quantum degrees of freedom. When immersed in an environment an open quantum battery needs to be stabilized against free energy leakage into the environment. For this purpose we here propose a simple protocol that relies on projective measurement and obeys a second-law like inequality for the battery entropy production rate.



rate research

Read More

Quantum batteries are quantum mechanical systems with many degrees of freedom which can be used to store energy and that display fast charging. The physics behind fast charging is still unclear. Is this just due to the collective behavior of the underlying interacting many-body system or does it have its roots in the quantum mechanical nature of the system itself? In this work we address these questions by studying three examples of quantum-mechanical many-body batteries with rigorous classical analogs. We find that the answer is model dependent and, even within the same model, depends on the value of the coupling constant that controls the interaction between the charger and the battery itself.
Continuously monitoring the environment of a quantum many-body system reduces the entropy of (purifies) the reduced density matrix of the system, conditional on the outcomes of the measurements. We show that, for mixed initial states, a balanced competition between measurements and entangling interactions within the system can result in a dynamical purification phase transition between (i) a phase that locally purifies at a constant system-size-independent rate, and (ii) a mixed phase where the purification time diverges exponentially in the system size. The residual entropy density in the mixed phase implies the existence of a quantum error-protected subspace where quantum information is reliably encoded against the future non-unitary evolution of the system. We show that these codes are of potential relevance to fault-tolerant quantum computation as they are often highly degenerate and satisfy optimal tradeoffs between encoded information densities and error thresholds. In spatially local models in 1+1 dimensions, this phase transition for mixed initial states occurs concurrently with a recently identified class of entanglement phase transitions for pure initial states. The mutual information of an initially completely-mixed state in 1+1 dimensions grows sublinearly in time due to the formation of the error protected subspace. The purification transition studied here also generalizes to systems with long-range interactions, where conventional notions of entanglement transitions have to be reformulated. Purification dynamics is likely a more robust probe of the transition in experiments, where imperfections generically reduce entanglement and drive the system towards mixed states. We describe the motivations for studying this novel class of non-equilibrium quantum dynamics in the context of advanced quantum computing platforms and fault-tolerant quantum computation.
Quantum sensors have recently achieved to detect the magnetic moment of few or single nuclear spins and measure their magnetic resonance (NMR) signal. However, the spectral resolution, a key feature of NMR, has been limited by relaxation of the sensor to a few kHz at room temperature. The spectral resolution of NMR signals from single nuclear spins can be improved by, e.g., using quantum memories, however at the expense of sensitivity. Classical signals on the other hand can be measured with exceptional spectral resolution by using continuous measurement techniques, without compromising sensitivity. To apply these techniques to single-spin NMR, it is critical to overcome the impact of back action inherent of quantum measurements. Here we report sequential weak measurements on a single $^{13}$C nuclear spin. The back-action of repetitive weak measurements causes the spin to undergo a quantum dynamics phase transition from coherent trapping to coherent oscillation. Single-spin NMR at room-temperature with a spectral resolution of 3.8 Hz is achieved. These results enable the use of measurement-correlation schemes for the detection of very weakly coupled single spins.
We put forth, theoretically and experimentally, the possibility of drastically cooling down (purifying) thermal ensembles (baths) of solid-state spins via a sequence of projective measurements of a probe spin that couples to the bath in an arbitrary fashion. If the measurement intervals are chosen to correspond to the anti-Zeno regime of the probe-bath exchange, then a short sequence of measurements with selected outcomes is found to have an appreciable success probability. Such a sequence is shown to condition the bath evolution so that it can dramatically enhance the bath-state purity and yield a low-entropy steady state of the bath. This purified bath state persists after the measurements and can be chosen, on-demand, to allow for Zeno- or anti-Zeno- like evolution of quantum systems coupled to the purified bath. The experimental setup for observing these effects consists of a Nitrogen Vacancy (NV) center in diamond at low temperature that acts as a probe of the surrounding nuclear spin bath. The NV single-shot measurements are induced by optical fields at microsecond intervals.
We present a systematic analysis and classification of several models of quantum batteries involving different combinations of two level systems and quantum harmonic oscillators. In particular, we study energy transfer processes from a given quantum system, termed charger, to another one, i.e. the proper battery. In this setting, we analyze different figures of merit, including the charging time, the maximum energy transfer, and the average charging power. The role of coupling Hamiltonians which do not preserve the number of local excitations in the charger-battery system is clarified by properly accounting them in the global energy balance of the model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا