No Arabic abstract
We present a systematic analysis and classification of several models of quantum batteries involving different combinations of two level systems and quantum harmonic oscillators. In particular, we study energy transfer processes from a given quantum system, termed charger, to another one, i.e. the proper battery. In this setting, we analyze different figures of merit, including the charging time, the maximum energy transfer, and the average charging power. The role of coupling Hamiltonians which do not preserve the number of local excitations in the charger-battery system is clarified by properly accounting them in the global energy balance of the model.
The energy charging of a quantum battery is analyzed in an open quantum setting, where the interaction between the battery element and the external power source is mediated by an ancilla system (the quantum charger) that acts as a controllable switch. Different implementations are analyzed putting emphasis on the interplay between coherent energy pumping mechanisms and thermalization.
The interaction between an atom and a one mode external driving field is an ubiquitous problem in many branches of physics and is often modeled using the Rabi Hamiltonian. In this paper we present a series of analytically solvable Hamiltonians that approximate the Rabi Hamiltonian and compare our results to the Jaynes-Cummings model which neglects the so-called counter-rotating term in the Rabi Hamiltonian. Through a unitary transformation that diagonlizes the Jaynes-Cummings model, we transform the counter-rotating term into separate terms representing several different physical processes. By keeping only certain terms, we can achieve an excellent approximation to the exact dynamics within specified parameter ranges.
Non-hermitian, $mathcal{PT}$-symmetric Hamiltonians, experimentally realized in optical systems, accurately model the properties of open, bosonic systems with balanced, spatially separated gain and loss. We present a family of exactly solvable, two-dimensional, $mathcal{PT}$ potentials for a non-relativistic particle confined in a circular geometry. We show that the $mathcal{PT}$ symmetry threshold can be tuned by introducing a second gain-loss potential or its hermitian counterpart. Our results explicitly demonstrate that $mathcal{PT}$ breaking in two dimensions has a rich phase diagram, with multiple re-entrant $mathcal{PT}$ symmetric phases.
We study Kerr nonlinear resonators (KNR) driven by a continuous wave field in quantum regimes where strong Kerr interactions give rise to selective resonant excitations of oscillatory modes. We use an exact quantum theory of KNR in the framework of the Fokker-Planck equation without any quantum state truncation or perturbation procedure. This approach allows non-perturbative consideration of KNR for various quantum operational regimes including cascaded processes between oscillatory states. We focus on understanding of multi-photon non-resonant and selective resonant excitations of introcavity mode depending on the detuning, the amplitude of the driving field and the strength of nonlinearity. The analysis is provided on the base of photon number distributions, the photon-number correlation function and the Wigner function.
We use analytic (current) density-potential maps of time-dependent (current) density functional theory (TD(C)DFT) to inverse engineer analytically solvable time-dependent quantum problems. In this approach the driving potential (the control signal) and the corresponding solution of the Schrodinger equation are parametrized analytically in terms of the basic TD(C)DFT observables. We describe the general reconstruction strategy and illustrate it with a number of explicit examples. First we consider the real space one-particle dynamics driven by a time-dependent electromagnetic field and recover, from the general TDDFT reconstruction formulas, the known exact solution for a driven oscillator with a time-dependent frequency. Then we use analytic maps of the lattice TD(C)DFT to control quantum dynamics in a discrete space. As a first example we construct a time-dependent potential which generates prescribed dynamics on a tight-binding chain. Then our method is applied to the dynamics of spin-1/2 driven by a time dependent magnetic field. We design an analytic control pulse that transfers the system from the ground to excited state and vice versa. This pulse generates the spin flip thus operating as a quantum NOT gate.