Do you want to publish a course? Click here

Resilient Coverage: Exploring the Local-to-Global Trade-off

56   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose a centralized control framework to select suitable robots from a heterogeneous pool and place them at appropriate locations to monitor a region for events of interest. In the event of a robot failure, the framework repositions robots in a user-defined local neighborhood of the failed robot to compensate for the coverage loss. The central controller augments the team with additional robots from the robot pool when simply repositioning robots fails to attain a user-specified level of desired coverage. The size of the local neighborhood around the failed robot and the desired coverage over the region are two objectives that can be manipulated to achieve a user-specified balance. We investigate the trade-off between the coverage compensation achieved through local repositioning and the computation required to plan the new robot locations. We also study the relationship between the size of the local neighborhood and the number of additional robots added to the team for a given user-specified level of desired coverage. We use extensive simulations and an experiment with a team of seven quadrotors to verify the effectiveness of our framework. Additionally, we show that to reach a high level of coverage in a neighborhood with a large robot population, it is more efficient to enlarge the neighborhood size, instead of adding additional robots and repositioning them.



rate research

Read More

Learning algorithms need bias to generalize and perform better than random guessing. We examine the flexibility (expressivity) of biased algorithms. An expressive algorithm can adapt to changing training data, altering its outcome based on changes in its input. We measure expressivity by using an information-theoretic notion of entropy on algorithm outcome distributions, demonstrating a trade-off between bias and expressivity. To the degree an algorithm is biased is the degree to which it can outperform uniform random sampling, but is also the degree to which is becomes inflexible. We derive bounds relating bias to expressivity, proving the necessary trade-offs inherent in trying to create strongly performing yet flexible algorithms.
In contrast to the rapid integration of the world economy, many regional trade agreements (RTAs) have also emerged since the early 1990s. This seeming contradiction has encouraged scholars and policy makers to explore the true effects of RTAs, including both regional and global trade relationships. This paper defines synthesized trade resistance and decomposes it into natural and artificial factors. Here, we separate the influence of geographical distance, economic volume, overall increases in transportation and labor costs and use the expectation maximization algorithm to optimize the parameters and quantify the trade purity indicator, which describes the true global trade environment and relationships among countries. This indicates that although global and most regional trade relations gradually deteriorated during the period 2007-2017, RTAs generate trade relations among members, especially contributing to the relative prosperity of EU and NAFTA countries. In addition, we apply the network to reflect the purity of the trade relations among countries. The effects of RTAs can be analyzed by comparing typical trade unions and trade communities, which are presented using an empirical network structure. This analysis shows that the community structure is quite consistent with some trade unions, and the representative RTAs constitute the core structure of international trade network. However, the role of trade unions has weakened, and multilateral trade liberalization has accelerated in the past decade. This means that more countries have recently tended to expand their trading partners outside of these unions rather than limit their trading activities to RTAs.
Cooperative game is a critical research area in the multi-agent reinforcement learning (MARL). Global reward game is a subclass of cooperative games, where all agents aim to maximize the global reward. Credit assignment is an important problem studied in the global reward game. Most of previous works stood by the view of non-cooperative-game theoretical framework with the shared reward approach, i.e., each agent being assigned a shared global reward directly. This, however, may give each agent an inaccurate reward on its contribution to the group, which could cause inefficient learning. To deal with this problem, we i) introduce a cooperative-game theoretical framework called extended convex game (ECG) that is a superset of global reward game, and ii) propose a local reward approach called Shapley Q-value. Shapley Q-value is able to distribute the global reward, reflecting each agents own contribution in contrast to the shared reward approach. Moreover, we derive an MARL algorithm called Shapley Q-value deep deterministic policy gradient (SQDDPG), using Shapley Q-value as the critic for each agent. We evaluate SQDDPG on Cooperative Navigation, Prey-and-Predator and Traffic Junction, compared with the state-of-the-art algorithms, e.g., MADDPG, COMA, Independent DDPG and Independent A2C. In the experiments, SQDDPG shows a significant improvement on the convergence rate. Finally, we plot Shapley Q-value and validate the property of fair credit assignment.
The design of mobile autonomous robots is challenging due to the limited on-board resources such as processing power and energy. A promising approach is to generate intelligent schedules that reduce the resource consumption while maintaining best performance, or more interestingly, to trade off reduced resource consumption for a slightly lower but still acceptable level of performance. In this paper, we provide a framework to aid designers in exploring such resource-performance trade-offs and finding schedules for mobile robots, guided by questions such as what is the minimum resource budget required to achieve a given level of performance? The framework is based on a quantitative multi-objective verification technique which, for a collection of possibly conflicting objectives, produces the Pareto front that contains all the optimal trade-offs that are achievable. The designer then selects a specific Pareto point based on the resource constraints and desired performance level, and a correct-by-construction schedule that meets those constraints is automatically generated. We demonstrate the efficacy of this framework on several robotic scenarios in both simulations and experiments with encouraging results.
This letter addresses the 3D coverage path planning (CPP) problem for terrain reconstruction of unknown obstacle rich environments. Due to sensing limitations, the proposed method, called CT-CPP, performs layered scanning of the 3D region to collect terrain data, where the traveling sequence is optimized using the concept of a coverage tree (CT). A modified TSP-based tree traversal strategy is proposed. The CT-CPP method is validated on a high-fidelity underwater simulator and the results are evaluated in comparison to an existing terrain following CPP method (TF-CPP). The CT-CPP with TSP optimizer yields significant improvements in trajectory length, energy consumption, and reconstruction error.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا