Do you want to publish a course? Click here

Shapley Q-value: A Local Reward Approach to Solve Global Reward Games

94   0   0.0 ( 0 )
 Added by Jianhong Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Cooperative game is a critical research area in the multi-agent reinforcement learning (MARL). Global reward game is a subclass of cooperative games, where all agents aim to maximize the global reward. Credit assignment is an important problem studied in the global reward game. Most of previous works stood by the view of non-cooperative-game theoretical framework with the shared reward approach, i.e., each agent being assigned a shared global reward directly. This, however, may give each agent an inaccurate reward on its contribution to the group, which could cause inefficient learning. To deal with this problem, we i) introduce a cooperative-game theoretical framework called extended convex game (ECG) that is a superset of global reward game, and ii) propose a local reward approach called Shapley Q-value. Shapley Q-value is able to distribute the global reward, reflecting each agents own contribution in contrast to the shared reward approach. Moreover, we derive an MARL algorithm called Shapley Q-value deep deterministic policy gradient (SQDDPG), using Shapley Q-value as the critic for each agent. We evaluate SQDDPG on Cooperative Navigation, Prey-and-Predator and Traffic Junction, compared with the state-of-the-art algorithms, e.g., MADDPG, COMA, Independent DDPG and Independent A2C. In the experiments, SQDDPG shows a significant improvement on the convergence rate. Finally, we plot Shapley Q-value and validate the property of fair credit assignment.

rate research

Read More

Value factorisation proves to be a very useful technique in multi-agent reinforcement learning (MARL), but the underlying mechanism is not yet fully understood. This paper explores a theoretic basis for value factorisation. We generalise the Shapley value in the coalitional game theory to a Markov convex game (MCG) and use it to guide value factorisation in MARL. We show that the generalised Shapley value possesses several features such as (1) accurate estimation of the maximum global value, (2) fairness in the factorisation of the global value, and (3) being sensitive to dummy agents. The proposed theory yields a new learning algorithm called Sharpley Q-learning (SHAQ), which inherits the important merits of ordinary Q-learning but extends it to MARL. In comparison with prior-arts, SHAQ has a much weaker assumption (MCG) that is more compatible with real-world problems, but has superior explainability and performance in many cases. We demonstrated SHAQ and verified the theoretic claims on Predator-Prey and StarCraft Multi-Agent Challenge (SMAC).
Recent advances in multi-agent reinforcement learning (MARL) have achieved super-human performance in games like Quake 3 and Dota 2. Unfortunately, these techniques require orders-of-magnitude more training rounds than humans and dont generalize to new agent configurations even on the same game. In this work, we propose Collaborative Q-learning (CollaQ) that achieves state-of-the-art performance in the StarCraft multi-agent challenge and supports ad hoc team play. We first formulate multi-agent collaboration as a joint optimization on reward assignment and show that each agent has an approximately optimal policy that decomposes into two parts: one part that only relies on the agents own state, and the other part that is related to states of nearby agents. Following this novel finding, CollaQ decomposes the Q-function of each agent into a self term and an interactive term, with a Multi-Agent Reward Attribution (MARA) loss that regularizes the training. CollaQ is evaluated on various StarCraft maps and shows that it outperforms existing state-of-the-art techniques (i.e., QMIX, QTRAN, and VDN) by improving the win rate by 40% with the same number of samples. In the more challenging ad hoc team play setting (i.e., reweight/add/remove units without re-training or finetuning), CollaQ outperforms previous SoTA by over 30%.
Reward shaping is an effective technique for incorporating domain knowledge into reinforcement learning (RL). Existing approaches such as potential-based reward shaping normally make full use of a given shaping reward function. However, since the transformation of human knowledge into numeric reward values is often imperfect due to reasons such as human cognitive bias, completely utilizing the shaping reward function may fail to improve the performance of RL algorithms. In this paper, we consider the problem of adaptively utilizing a given shaping reward function. We formulate the utilization of shaping rewards as a bi-level optimization problem, where the lower level is to optimize policy using the shaping rewards and the upper level is to optimize a parameterized shaping weight function for true reward maximization. We formally derive the gradient of the expected true reward with respect to the shaping weight function parameters and accordingly propose three learning algorithms based on different assumptions. Experiments in sparse-reward cartpole and MuJoCo environments show that our algorithms can fully exploit beneficial shaping rewards, and meanwhile ignore unbeneficial shaping rewards or even transform them into beneficial ones.
Reward-Weighted Regression (RWR) belongs to a family of widely known iterative Reinforcement Learning algorithms based on the Expectation-Maximization framework. In this family, learning at each iteration consists of sampling a batch of trajectories using the current policy and fitting a new policy to maximize a return-weighted log-likelihood of actions. Although RWR is known to yield monotonic improvement of the policy under certain circumstances, whether and under which conditions RWR converges to the optimal policy have remained open questions. In this paper, we provide for the first time a proof that RWR converges to a global optimum when no function approximation is used.
It is often difficult to hand-specify what the correct reward function is for a task, so researchers have instead aimed to learn reward functions from human behavior or feedback. The types of behavior interpreted as evidence of the reward function have expanded greatly in recent years. Weve gone from demonstrations, to comparisons, to reading into the information leaked when the human is pushing the robot away or turning it off. And surely, there is more to come. How will a robot make sense of all these diverse types of behavior? Our key insight is that different types of behavior can be interpreted in a single unifying formalism - as a reward-rational choice that the human is making, often implicitly. The formalism offers both a unifying lens with which to view past work, as well as a recipe for interpreting new sources of information that are yet to be uncovered. We provide two examples to showcase this: interpreting a new feedback type, and reading into how the choice of feedback itself leaks information about the reward.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا