Do you want to publish a course? Click here

DC vacuum breakdown in an external magnetic field

60   0   0.0 ( 0 )
 Added by Serhii Lebedynskyi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The subject of the present theoretical and experimental investigations is the effect of the external magnetic field induction on dark current and a possibility of breakdown. The generalization of the Fowler-Nordheim equation makes it possible to take into account the influence of a magnetic field parallel to the cathode surface on the field emission current. The reduction in the breakdown voltage due to the increment in electron-impact ionization was theoretical predicted. Experimentally shown that the presence of a magnetic field about a tenth as a large as the cutoff magnetic field [18] reduces the breakdown voltage by 10% to 20% for practically all cathodes no matter what their surface treatment.



rate research

Read More

In this Letter we discuss a few issues concerning the magnetic susceptibility of the quark condensate and the Son-Yamamoto (SY) anomaly matching equation. It is shown that the SY relation in the IR implies a nontrivial interplay between the kinetic and WZW terms in the chiral Lagrangian. It is also demonstrated that in a holographic framework an external magnetic field triggers mixing between scalar and tensor fields. Accounting for this, one may calculate the magnetic susceptibility of the quark condensate to all orders in the magnetic field.
98 - N. S. Phan , W. Wei , B. Beaumont 2020
We report results from a study on electrical breakdown in liquid helium using near-uniform-field stainless steel electrodes with a stressed area of $sim$0.725 cm$^2$. The distribution of the breakdown field is obtained for temperatures between 1.7 K and 4.0 K, pressures between the saturated vapor pressure and 626 Torr, and with electrodes of different surface polishes. A data-based approach for determining the electrode-surface-area scaling of the breakdown field is presented. The dependence of the breakdown probability on the field strength as extracted from the breakdown field distribution data is used to show that breakdown is a surface phenomenon closely correlated with Fowler-Nordheim field emission from asperities on the cathode. We show that the results from this analysis provides an explanation for the supposed electrode gap-size effect and also allows for a determination of the breakdown-field distribution for arbitrary shaped electrodes. Most importantly, the analysis method presented in this work can be extended to other noble liquids to explore the dependencies for electrical breakdown in those media.
Influence of permanent magnetic field up to 7.5 T on plasma emission and laser-assisted Au nanoparticles fragmentation in water is experimentally studied. It is found that presence of magnetic field causes the breakdown plasma emission to start earlier regarding to laser pulse. Field presence also accelerates the fragmentation of nanoparticles down to a few nanometers. Dependence of Au NPs fragmentation rate in water on magnetic field intensity is investigated. The results are discussed on the basis of laser-induced plasma interaction with magnetic field.
We investigate inhomogeneous chiral condensates, such as the so-called dual chiral density wave of dense quark matter, under an external magnetic field at finite real and imaginary chemical potentials. In a model-independent manner, we find that analytic continuation from imaginary to real chemical potential is not possible due to the singularity induced by inhomogeneous chiral condensates at zero chemical potential. From the discussion on the non-analyticity and methods used in lattice QCD simulations, e.g., Taylor expansion, and the analytic continuation with an imaginary chemical potential, it turns out that information on an inhomogeneous chiral condensed phase is missed in the lattice simulations at finite baryon chemical potentials unless the non-analyticity at zero chemical potential is correctly considered. We also discuss an exceptional case without such non-analyticity at zero chemical potential.
We study in the framework of relativistic quantum mechanics the evolution of a system of two Dirac neutrinos that mix with each other and have non-vanishing magnetic moments. The dynamics of this system in an external magnetic field is determined by solving the Pauli-Dirac equation with a given initial condition. We consider first neutrino spin-flavor oscillations in a constant magnetic field and derive an analytical expression for the transition probability of spin-flavor conversion in the limit of small magnetic interactions. We then investigate ultrarelativistic neutrinos in an transversal magnetic field and derive their wave functions and transition probabilities with no limitation for the size of transition magnetic moments. Although we consider neutrinos, our formalism is straightforwardly applicable to any spin-1/2 particles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا