No Arabic abstract
Phase curve observations provide an opportunity to study the full energy budgets of exoplanets by quantifying the amount of heat redistributed from their daysides to their nightsides. Theories explaining the properties of phase curves for hot Jupiters have focused on the balance between radiation and dynamics as the primary parameter controlling heat redistribution. However, recent phase curves have shown deviations from the trends that emerge from this theory, which has led to work on additional processes that may affect hot Jupiter energy budgets. One such process, molecular hydrogen dissociation and recombination, can enhance energy redistribution on ultra-hot Jupiters with temperatures above $sim2000$ K. In order to study the impact of H$_{2}$ dissociation on ultra-hot Jupiters, we present a phase curve of KELT-9b observed with the Spitzer Space Telescope at 4.5 $mu$m. KELT-9b is the hottest known transiting planet, with a 4.5-$mu$m dayside brightness temperature of $4566^{+140}_{-136}$ K and a nightside temperature of $2556^{+101}_{-97}$ K. We observe a phase curve amplitude of $0.609 pm 0.020$ and a hot spot offset of $18.7^{+2.1}_{-2.3}$ degrees. The observed amplitude is too small to be explained by a simple balance between radiation and advection. General circulation models (GCMs) and an energy balance model that include the effects of H$_{2}$ dissociation and recombination provide a better match to the data. The GCMs, however, predict a maximum hot spot offset of $5$ degrees, which disagrees with our observations at $>5sigma$ confidence. This discrepancy may be due to magnetic effects in the planets highly ionized atmosphere.
The chemical composition of an exoplanet is a key ingredient in constraining its formation history. Iron is the most abundant transition metal, but has never been directly detected in an exoplanet due to its highly refractory nature. KELT-9b (HD 195689b) is the archetype of the class of ultra-hot Jupiters that straddle the transition between stars and gas-giant exoplanets and serve as distinctive laboratories for studying atmospheric chemistry, because of its high equilibrium temperature of 4050 +/- 180 K. These properties imply that its atmosphere is a tightly constrained chemical system that is expected to be nearly in chemical equilibrium and cloud-free. It was previously predicted that the spectral lines of iron will be detectable in the visible range of wavelengths. At these high temperatures, iron and several other transition metals are not sequestered in molecules or cloud particles and exist solely in their atomic forms. Here, we report the direct detection of atomic neutral and singly-ionized iron (Fe and Fe+), and singly-ionized titanium (Ti+) in KELT-9b via the cross-correlation technique applied to high-resolution spectra obtained during the primary transit of the exoplanet.
With a day-side temperature in excess of 4500K, comparable to a mid-K-type star, KELT-9b is the hottest planet known. Its extreme temperature makes KELT-9b a particularly interesting test bed for investigating the nature and diversity of gas giant planets. We observed the transit of KELT-9b at high spectral resolution (R$sim$94,600) with the CARMENES instrument on the Calar Alto 3.5-m telescope. Using these data, we detect for the first time ionized calcium (CaII triplet) absorption in the atmosphere of KELT-9b; this is the second time that CaII has been observed in a hot Jupiter. Our observations also reveal prominent H$alpha$ absorption, confirming the presence of an extended hydrogen envelope around KELT-9b. We compare our detections with an atmospheric model and find that all four lines form between atmospheric temperatures of 6100 K and 8000 K and that the CaII lines form at pressures between 10 and 50 nbar while the H$alpha$ line forms at a lower pressure ($sim$6 nbar), higher up in the atmosphere. The altitude that the core of H$alpha$ line forms is found to be $sim$1.4 R$_{p}$, well within the planetary Roche lobe ($sim$1.9 R$_{p}$). Therefore, rather than probing the escaping upper atmosphere directly, the H$alpha$ line and the other observed Balmer and metal lines serve as atmospheric thermometers enabling us to probe the planets temperature profile, thus energy budget.
Thermal dissociation and recombination of molecular hydrogen, H_2, in the atmospheres of ultra-hot Jupiters (UHJs) has been shown to play an important role in global heat redistribution. This, in turn, significantly impacts their planetary emission, yet only limited investigations on the atmospheric effects have so far been conducted. Here we investigate the heat redistribution caused by this dissociation/recombination reaction, alongside feedback mechanisms between the atmospheric chemistry and radiative transfer, for a planetary and stellar configuration typical of UHJs. To do this, we have developed a time-dependent pseudo-2D model, including a treatment of time-independent equilibrium chemical effects. As a result of the reaction heat redistribution, we find temperature changes of up to $sim$400 K in the atmosphere. When TiO and VO are additionally considered as opacity sources, these changes in temperature increase to over $sim$800 K in some areas. This heat redistribution is found to significantly shift the region of peak atmospheric temperature, or hotspot, towards the evening terminator in both cases. The impact of varying the longitudinal wind speed on the reaction heat distribution is also investigated. When excluding TiO/VO, increased wind speeds are shown to increase the impact of the reaction heat redistribution up to a threshold wind speed. When including TiO/VO there is no apparent wind speed threshold, due to thermal stabilisation by these species. We also construct pseudo-2D phase curves from our model, and highlight both significant spectral flux damping and increased phase offset caused by the reaction heat redistribution.
Ultra-hot Jupiters are emerging as a new class of exoplanets. Studying their chemical compositions and temperature structures will improve the understanding of their mass loss rate as well as their formation and evolution. We present the detection of ionized calcium in the two hottest giant exoplanets - KELT-9b and WASP-33b. By utilizing transit datasets from CARMENES and HARPS-N observations, we achieved high confidence level detections of Ca II using the cross-correlation method. We further obtain the transmission spectra around the individual lines of the Ca II H&K doublet and the near-infrared triplet, and measure their line profiles. The Ca II H&K lines have an average line depth of 2.02 $pm$ 0.17 % (effective radius of 1.56 Rp) for WASP-33b and an average line depth of 0.78 $pm$ 0.04 % (effective radius of 1.47 Rp) for KELT-9b, which indicates that the absorptions are from very high upper atmosphere layers close to the planetary Roche lobes. The observed Ca II lines are significantly deeper than the predicted values from the hydrostatic models. Such a discrepancy is probably a result of hydrodynamic outflow that transports a significant amount of Ca II into the upper atmosphere. The prominent Ca II detection with the lack of significant Ca I detection implies that calcium is mostly ionized in the upper atmospheres of the two planets.
Context. Observationally constraining the atmospheric temperature-pressure (TP) profile of exoplanets is an important step forward for improving planetary atmosphere models, further enabling one to place the detection of spectral features and the measurement of atomic and molecular abundances through transmission and emission spectroscopy on solid ground. Aims. The aim is to constrain the TP profile of the ultra-hot Jupiter KELT-9b by fitting synthetic spectra to the observed H$alpha$ and H$beta$ lines and identify why self-consistent planetary TP models are unable to fit the observations. Methods. We construct 126 one-dimensional TP profiles varying the lower and upper atmospheric temperatures, as well as the location and gradient of the temperature rise. For each TP profile, we compute transmission spectra of the H$alpha$ and H$beta$ lines employing the Cloudy radiative transfer code, which self-consistently accounts for non-local thermodynamic equilibrium (NLTE) effects. Results. The TP profiles leading to best fit the observations are characterised by an upper atmospheric temperature of 10000-11000 K and by an inverted temperature profile at pressures higher than 10$^{-4}$ bar. We find that the assumption of local thermodynamic equilibrium (LTE) leads to overestimate the level population of excited hydrogen by several orders of magnitude, and hence to significantly overestimate the strength of the Balmer lines. The chemical composition of the best fitting models indicate that the high upper atmospheric temperature is most likely driven by metal photoionisation and that FeII and FeIII have comparable abundances at pressures lower than 10$^{-6}$ bar, possibly making the latter detectable. Conclusions. Modelling the atmospheres of ultra-hot Jupiters requires one to account for metal photoionisation. [abridged]