No Arabic abstract
With a day-side temperature in excess of 4500K, comparable to a mid-K-type star, KELT-9b is the hottest planet known. Its extreme temperature makes KELT-9b a particularly interesting test bed for investigating the nature and diversity of gas giant planets. We observed the transit of KELT-9b at high spectral resolution (R$sim$94,600) with the CARMENES instrument on the Calar Alto 3.5-m telescope. Using these data, we detect for the first time ionized calcium (CaII triplet) absorption in the atmosphere of KELT-9b; this is the second time that CaII has been observed in a hot Jupiter. Our observations also reveal prominent H$alpha$ absorption, confirming the presence of an extended hydrogen envelope around KELT-9b. We compare our detections with an atmospheric model and find that all four lines form between atmospheric temperatures of 6100 K and 8000 K and that the CaII lines form at pressures between 10 and 50 nbar while the H$alpha$ line forms at a lower pressure ($sim$6 nbar), higher up in the atmosphere. The altitude that the core of H$alpha$ line forms is found to be $sim$1.4 R$_{p}$, well within the planetary Roche lobe ($sim$1.9 R$_{p}$). Therefore, rather than probing the escaping upper atmosphere directly, the H$alpha$ line and the other observed Balmer and metal lines serve as atmospheric thermometers enabling us to probe the planets temperature profile, thus energy budget.
Recent observations of the ultra-hot Jupiter WASP-76b have revealed a diversity of atmospheric species. Here we present new high-resolution transit spectroscopy of WASP-76b with GRACES at the Gemini North Observatory, serving as a baseline for the Large and Long Program Exploring the Diversity of Exoplanet Atmospheres at High Spectral Resolution (Exoplanets with Gemini Spectroscopy, or ExoGemS for short). With a broad spectral range of $400 - 1050$ nm, these observations allow us to search for a suite of atomic species. We recover absorption features due to neutral sodium (Na I), and report a new detection of the ionized calcium (Ca II) triplet at ~ $850$ nm in the atmosphere of WASP-76b, complementing a previous detection of the Ca II H & K lines. The triplet has line depths of $0.295 pm 0.034$% at ~ $849.2$ nm, $0.574 pm 0.041$% at ~ $854.2$ nm, and $0.454 pm 0.024$% at ~ $866.2$ nm, corresponding to effective radii close to (but within) the planets Roche radius. These measured line depths are significantly larger than those predicted by model LTE and NLTE spectra obtained on the basis of a pressure-temperature profile computed assuming radiative equilibrium. The discrepancy suggests that the layers probed by our observations are either significantly hotter than predicted by radiative equilibrium and/or in a hydrodynamic state. Our results shed light on the exotic atmosphere of this ultra-hot world, and will inform future analyses from the ExoGemS survey.
Ultra-hot Jupiters are emerging as a new class of exoplanets. Studying their chemical compositions and temperature structures will improve the understanding of their mass loss rate as well as their formation and evolution. We present the detection of ionized calcium in the two hottest giant exoplanets - KELT-9b and WASP-33b. By utilizing transit datasets from CARMENES and HARPS-N observations, we achieved high confidence level detections of Ca II using the cross-correlation method. We further obtain the transmission spectra around the individual lines of the Ca II H&K doublet and the near-infrared triplet, and measure their line profiles. The Ca II H&K lines have an average line depth of 2.02 $pm$ 0.17 % (effective radius of 1.56 Rp) for WASP-33b and an average line depth of 0.78 $pm$ 0.04 % (effective radius of 1.47 Rp) for KELT-9b, which indicates that the absorptions are from very high upper atmosphere layers close to the planetary Roche lobes. The observed Ca II lines are significantly deeper than the predicted values from the hydrostatic models. Such a discrepancy is probably a result of hydrodynamic outflow that transports a significant amount of Ca II into the upper atmosphere. The prominent Ca II detection with the lack of significant Ca I detection implies that calcium is mostly ionized in the upper atmospheres of the two planets.
Several results indicate that the atmospheric temperature of the ultra-hot Jupiter KELT-9b in the main line formation region is a few thousand degrees higher than predicted by self-consistent models. We test whether non-local thermodynamic equilibrium (NLTE) effects are responsible for the presumably higher temperature. We employ the Cloudy NLTE radiative transfer code to self-consistently compute the upper atmospheric temperature-pressure (TP) profile of KELT-9b, assuming solar metallicity. The Cloudy NLTE TP profile is $approx$2000 K hotter than that obtained with previous models assuming local thermodynamic equilibrium (LTE). In particular, in the 1-10$^{-7}$ bar range the temperature increases from $approx$4000 K to $approx$8500 K, remaining roughly constant at lower pressures. We find that the high temperature in the upper atmosphere of KELT-9b is driven principally by NLTE effects modifying the Fe and Mg level populations, which strongly influence the atmospheric thermal balance. We employ Cloudy to compute LTE and NLTE synthetic transmission spectra on the basis of the TP profiles computed in LTE and NLTE, respectively, finding that the NLTE model generally produces stronger absorption lines than the LTE model (up to 30%), which is largest in the ultraviolet. We compare the NLTE synthetic transmission spectrum with the observed H$alpha$ and H$beta$ line profiles obtaining an excellent match, thus supporting our results. The NLTE synthetic transmission spectrum can be used to guide future observations aiming at detecting features in the planets transmission spectrum. Metals, such as Mg and Fe, and NLTE effects shape the upper atmospheric temperature structure of KELT-9b and thus affect the mass-loss rates derived from it. Finally, our results call for checking whether this is the case also of cooler planets.
The chemical composition of an exoplanet is a key ingredient in constraining its formation history. Iron is the most abundant transition metal, but has never been directly detected in an exoplanet due to its highly refractory nature. KELT-9b (HD 195689b) is the archetype of the class of ultra-hot Jupiters that straddle the transition between stars and gas-giant exoplanets and serve as distinctive laboratories for studying atmospheric chemistry, because of its high equilibrium temperature of 4050 +/- 180 K. These properties imply that its atmosphere is a tightly constrained chemical system that is expected to be nearly in chemical equilibrium and cloud-free. It was previously predicted that the spectral lines of iron will be detectable in the visible range of wavelengths. At these high temperatures, iron and several other transition metals are not sequestered in molecules or cloud particles and exist solely in their atomic forms. Here, we report the direct detection of atomic neutral and singly-ionized iron (Fe and Fe+), and singly-ionized titanium (Ti+) in KELT-9b via the cross-correlation technique applied to high-resolution spectra obtained during the primary transit of the exoplanet.
We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright ($V = 11.7$) star TYC 2688-1839-1. A global analysis of the system shows KELT-16 to be an F7V star with $T_textrm{eff} = 6236pm54$ K, $log{g_star} = 4.253_{-0.036}^{+0.031}$, [Fe/H] = -0.002$_{-0.085}^{+0.086}$, $M_star = 1.211_{-0.046}^{+0.043} M_odot$, and $R_star = 1.360_{-0.053}^{+0.064} R_odot$. The planet is a relatively high mass inflated gas giant with $M_textrm{P} = 2.75_{-0.15}^{+0.16} M_textrm{J}$, $R_textrm{P} = 1.415_{-0.067}^{+0.084} R_textrm{J}$, density $rho_textrm{P} = 1.20pm0.18$ g cm$^{-3}$, surface gravity $log{g_textrm{P}} = 3.530_{-0.049}^{+0.042}$, and $T_textrm{eq} = 2453_{-47}^{+55}$ K. The best-fitting linear ephemeris is $T_textrm{C} = 2457247.24791pm0.00019$ BJD$_{tdb}$ and $P = 0.9689951 pm 0.0000024$ d. KELT-16b joins WASP-18b, -19b, -43b, -103b, and HATS-18b as the only giant transiting planets with $P < 1$ day. Its ultra-short period and high irradiation make it a benchmark target for atmospheric studies by HST, Spitzer, and eventually JWST. For example, as a hotter, higher mass analog of WASP-43b, KELT-16b may feature an atmospheric temperature-pressure inversion and day-to-night temperature swing extreme enough for TiO to rain out at the terminator. KELT-16b could also join WASP-43b in extending tests of the observed mass-metallicity relation of the Solar System gas giants to higher masses. KELT-16b currently orbits at a mere $sim$ 1.7 Roche radii from its host star, and could be tidally disrupted in as little as a few $times 10^{5}$ years (for a stellar tidal quality factor of $Q_* = 10^5$). Finally, the likely existence of a widely separated bound stellar companion in the KELT-16 system makes it possible that Kozai-Lidov oscillations played a role in driving KELT-16b inward to its current precarious orbit.