No Arabic abstract
It is generally believed that Type Ia supernovae are thermonuclear explosions of carbon-oxygen white dwarfs (WDs). However, there is currently no consensus regarding the events leading to the explosion. A binary WD (WD-WD) merger is a possible progenitor of Type Ia supernovae. Space-based gravitational wave (GW) detectors with great sensitivity in the decihertz range like DECIGO can observe WD-WD mergers directly. Therefore, access to the deci-Hz band of GWs would enable multi-messenger observations of Type Ia supernovae to constrain their progenitor and explosion mechanism. In this paper, we consider the event rate of WD-WD mergers and minimum detection range to observe one WD-WD merger per year, using nearby galaxy catalog and the relation between the Ia supernova and the host galaxy. Furthermore, we calculate the DECIGOs ability to localize WD-WD mergers and to determine the masses of binary mergers. We estimate that if the deci-Hz GW observatory can detect the GW whose amplitude is $hsim10^{-20}[rm Hz^{-1/2}]$ at 0.1 Hz, 1000 times higher than the detection limit of DECIGO. In fact, DECIGO is expected to detect WD-WD ($1M_{odot}-1M_{odot}$) mergers within $z=0.115$,corresponding to the detection rate of $sim20000,rm yr^{-1}$, and identify the host galaxy of WD-WD mergers for $sim8000$ WD-WDs only by the GW detection.
The gravitational-wave (GW) detection of GW190521 has provided new insights on the mass distribution of black holes and new constraints for astrophysical formation channels. With independent claims of GW190521 having significant pre-merger eccentricity, we investigate what this implies for GW190521-like binaries that form dynamically. The Laser Interferometer Space Antenna (LISA) will also be sensitive to GW190521-like binaries if they are circular from an isolated formation channel. We show, however, that GW190521-like binaries that form dynamically may skip the LISA band entirely. To this end, we simulate GW190521 analogues that dynamically form via post-Newtonian binary-single scattering. From these scattering experiments, we find that GW190521-like binaries may enter the LIGO-Virgo band with significant eccentricity as suggested by recent studies, though well below an eccentricity of $e_{rm 10Hz} lesssim 0.7$. Eccentric GW190521-like binaries further motivate the astrophysical science case for a decihertz GW observatory, such as the kilometer-scale version of the Midband Atomic Gravitational-wave Interferometric Sensor (MAGIS). Pre-merger observations of GW190521-like binaries with such a decihertz GW detector would be able to constrain the eccentricity of GW190521-like binaries to greater precision than with just LIGO-Virgo alone. These eccentricity constraints would also provide additional insights into the possible environments that GW190521-like binaries form in.
The explosive origin of the young supernova remnant (SNR) 3C 397 (G41.1-0.3) is debated. Its elongated morphology and proximity to a molecular cloud are suggestive of a core-collapse (CC) SN origin, yet recent X-ray studies of heavy metals show chemical yields and line centroid energies consistent with a Type Ia SN. In this paper, we analyze the full X-ray spectrum from 0.7-10 keV of 3C 397 observed with Suzaku and compare the line centroid energies, fluxes, and elemental abundances of intermediate-mass and heavy metals (Mg to Ni) to Type Ia and CC hydrodynamical model predictions. Based on the results, we conclude that 3C 397 likely arises from an energetic Type Ia explosion in a high-density ambient medium, and we show that the progenitor was a near Chandrasekhar mass white dwarf.
Several explosions of thermonuclear supernovae (SNe Ia) have been found to exhibit deviations from spherical symmetry upon closer inspection. Examples are the gamma-ray lines from SN 2014J as measured by INTEGRAL/SPI, and morphology information from radioactive isotopes in older remnants such as Tycho. A systematic study on the effects of parameters such as ignition geometry and burning morphology in SNe Ia is still missing. We use a 2D hydrodynamics code with post-processing nucleosynthesis and simulate the double detonations in a sub-Chandrasekhar mass carbon-oxygen white dwarf starting from the nuclear runaway in the accumulated He envelope towards disruption of the white dwarf. We explore potential variety through four triggering scenarios that sample main asymmetry drivers. We further investigate their global effects on the aspherical structure of the ejecta based on individual elements. We apply the results to the well observed SN 2014J and other recently observed SN remnants in order to illustrate how these new observational data together with other observed quantities help to constrain the explosion and the progenitors of SNe Ia.
We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U, B, and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 solar radii from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon absorption up through day -13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.
Coalescences of binary white dwarfs represent a copious source of information for gravitational wave interferometers operating in the decihertz band. Moreover, according to the double degenerate scenario, they have been suggested to be possible progenitors of supernovae (SNe) Type Ia events. In this paper we discuss the detectability of gravitational waves emitted by the inspiral of double white dwarfs. We focus on the constraints that can be derived on the sources luminosity distance, and on other binarys parameters, such as the angular momentum orientation. We explore the possibility of coincident detections of gravitational and electromagnetic signals; the latter comes from the observation of the supernova counterpart. Confirmation of the double degenerate scenario would allow one to use distances inferred in the gravitational wave channel to consistently calibrate SNe as standard candles. We find that decihertz gravitational wave interferometers can measure the luminosity distance with relative accuracy better than $1%$ for binaries at 100 Mpc. We show how multimessenger observations can put strong constraints on the Hubble constant, which are tighter than current bounds at low redshift, and how they can potentially shed new light on the differences with early-universe measurements.