Do you want to publish a course? Click here

Beacons in Dense Wi-Fi Networks: How to Befriend with Neighbors in the 5G World?

90   0   0.0 ( 0 )
 Added by Dmitry Bankov
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

To address 5G challenges, IEEE 802.11 is currently developing new amendments to the Wi-Fi standard, the most promising of which is 802.11ax. A key scenario considered by the developers of this amendment is dense and overlapped networks typically present in residential buildings, offices, airports, stadiums, and other places of a modern city. Being crucial for Wi-Fi hotspots, the hidden station problem becomes even more challenging for dense and overlapped networks, where even access points (APs) can be hidden. In this case, user stations can experience continuous collisions of beacons sent by different APs, which can cause disassociation and break Internet access. In this paper, we show that beacon collisions are rather typical for residential networks and may lead to unexpected and irreproducible malfunction. We investigate how often beacon collisions occur, and describe a number of mechanisms which can be used to avoid beacon collisions in dense deployment. Specifically, we pay much attention to those mechanisms which are currently under consideration of the IEEE 802.11ax group.



rate research

Read More

Ultra Reliable Low Latency Communications (URLLC) is an important challenge for the next generation wireless networks, which poses very strict requirements to the delay and packet loss ratio. Satisfaction is hardly possible without introducing additional functionality to the existing communication technologies. In the paper, we propose and study an approach to enable URLLC in Wi-Fi networks by exploiting an additional radio similar to that of IEEE 802.11ba. With extensive simulation, we show that our approach allows decreasing the delay by orders of magnitude, while the throughput of non-URLLC devices is reduced insignificantly.
Data traffic over cellular networks is exhibiting an ongoing exponential growth, increasing by an order of magnitude every year and has already surpassed voice traffic. This increase in data traffic demand has led to a need for solutions to enhance capacity provision, whereby traffic offloading to Wi-Fi is one means that can enhance realised capacity. Though offloading to Wi-Fi networks has matured over the years, a number of challenges are still being faced by operators to its realization. In this article, we carry out a survey of the practical challenges faced by operators in data traffic offloading to Wi-Fi networks. We also provide recommendations to successfully address these challenges.
We show experimentally that workload-based AP-STA associations can improve system throughput significantly. We present a predictive model that guides optimal resource allocations in dense Wi-Fi networks and achieves 72-77% of the optimal throughput with varying training data set sizes using a 3-day trace of real cable modem traffic.
The application of Machine Learning (ML) techniques to complex engineering problems has proved to be an attractive and efficient solution. ML has been successfully applied to several practical tasks like image recognition, automating industrial operations, etc. The promise of ML techniques in solving non-linear problems influenced this work which aims to apply known ML techniques and develop new ones for wireless spectrum sharing between Wi-Fi and LTE in the unlicensed spectrum. In this work, we focus on the LTE-Unlicensed (LTE-U) specification developed by the LTE-U Forum, which uses the duty-cycle approach for fair coexistence. The specification suggests reducing the duty cycle at the LTE-U base-station (BS) when the number of co-channel Wi-Fi basic service sets (BSSs) increases from one to two or more. However, without decoding the Wi-Fi packets, detecting the number of Wi-Fi BSSs operating on the channel in real-time is a challenging problem. In this work, we demonstrate a novel ML-based approach which solves this problem by using energy values observed during the LTE-U OFF duration. It is relatively straightforward to observe only the energy values during the LTE-U BS OFF time compared to decoding the entire Wi-Fi packet, which would require a full Wi-Fi receiver at the LTE-U base-station. We implement and validate the proposed ML-based approach by real-time experiments and demonstrate that there exist distinct patterns between the energy distributions between one and many Wi-Fi AP transmissions. The proposed ML-based approach results in a higher accuracy (close to 99% in all cases) as compared to the existing auto-correlation (AC) and energy detection (ED) approaches.
We unveil the existence of a vulnerability in Wi-Fi, which allows an adversary to remotely launch a Denial-of-Service (DoS) attack that propagates both in time and space. This vulnerability stems from a coupling effect induced by hidden nodes. Cascading DoS attacks can congest an entire network and do not require the adversary to violate any protocol. We demonstrate the feasibility of such attacks through experiments with real Wi-Fi cards, extensive ns-3 simulations, and theoretical analysis. The simulations show that the attack is effective both in networks operating under fixed and varying bit rates, as well as ad hoc and infrastructure modes. To gain insight into the root-causes of the attack, we model the network as a dynamical system and analyze its limiting behavior. The model predicts that a phase transition (and hence a cascading attack) is possible when the retry limit parameter of Wi-Fi is greater or equal to 7, and explicitly characterizes the phase transition region in terms of the system parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا