Do you want to publish a course? Click here

AV Speech Enhancement Challenge using a Real Noisy Corpus

67   0   0.0 ( 0 )
 Added by Mandar Gogate
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper presents, a first of its kind, audio-visual (AV) speech enhacement challenge in real-noisy settings. A detailed description of the AV challenge, a novel real noisy AV corpus (ASPIRE), benchmark speech enhancement task, and baseline performance results are outlined. The latter are based on training a deep neural architecture on a synthetic mixture of Grid corpus and ChiME3 noises (consisting of bus, pedestrian, cafe, and street noises) and testing on the ASPIRE corpus. Subjective evaluations of five different speech enhancement algorithms (including SEAGN, spectrum subtraction (SS) , log-minimum mean-square error (LMMSE), audio-only CochleaNet, and AV CochleaNet) are presented as baseline results. The aim of the multi-modal challenge is to provide a timely opportunity for comprehensive evaluation of novel AV speech enhancement algorithms, using our new benchmark, real-noisy AV corpus and specified performance metrics. This will promote AV speech processing research globally, stimulate new ground-breaking multi-modal approaches, and attract interest from companies, academics and researchers working in AV speech technologies and applications. We encourage participants (through a challenge website sign-up) from both the speech and hearing research communities, to benefit from their complementary approaches to AV speech in noise processing.



rate research

Read More

Variational auto-encoders (VAEs) are deep generative latent variable models that can be used for learning the distribution of complex data. VAEs have been successfully used to learn a probabilistic prior over speech signals, which is then used to perform speech enhancement. One advantage of this generative approach is that it does not require pairs of clean and noisy speech signals at training. In this paper, we propose audio-visual variants of VAEs for single-channel and speaker-independent speech enhancement. We develop a conditional VAE (CVAE) where the audio speech generative process is conditioned on visual information of the lip region. At test time, the audio-visual speech generative model is combined with a noise model based on nonnegative matrix factorization, and speech enhancement relies on a Monte Carlo expectation-maximization algorithm. Experiments are conducted with the recently published NTCD-TIMIT dataset as well as the GRID corpus. The results confirm that the proposed audio-visual CVAE effectively fuses audio and visual information, and it improves the speech enhancement performance compared with the audio-only VAE model, especially when the speech signal is highly corrupted by noise. We also show that the proposed unsupervised audio-visual speech enhancement approach outperforms a state-of-the-art supervised deep learning method.
In this manuscript, the topic of multi-corpus Speech Emotion Recognition (SER) is approached from a deep transfer learning perspective. A large corpus of emotional speech data, EmoSet, is assembled from a number of existing SER corpora. In total, EmoSet contains 84181 audio recordings from 26 SER corpora with a total duration of over 65 hours. The corpus is then utilised to create a novel framework for multi-corpus speech emotion recognition, namely EmoNet. A combination of a deep ResNet architecture and residual adapters is transferred from the field of multi-domain visual recognition to multi-corpus SER on EmoSet. Compared against two suitable baselines and more traditional training and transfer settings for the ResNet, the residual adapter approach enables parameter efficient training of a multi-domain SER model on all 26 corpora. A shared model with only $3.5$ times the number of parameters of a model trained on a single database leads to increased performance for 21 of the 26 corpora in EmoSet. Measured by McNemars test, these improvements are further significant for ten datasets at $p<0.05$ while there are just two corpora that see only significant decreases across the residual adapter transfer experiments. Finally, we make our EmoNet framework publicly available for users and developers at https://github.com/EIHW/EmoNet. EmoNet provides an extensive command line interface which is comprehensively documented and can be used in a variety of multi-corpus transfer learning settings.
In recent years, waveform-mapping-based speech enhancement (SE) methods have garnered significant attention. These methods generally use a deep learning model to directly process and reconstruct speech waveforms. Because both the input and output are in waveform format, the waveform-mapping-based SE methods can overcome the distortion caused by imperfect phase estimation, which may be encountered in spectral-mapping-based SE systems. So far, most waveform-mapping-based SE methods have focused on single-channel tasks. In this paper, we propose a novel fully convolutional network (FCN) with Sinc and dilated convolutional layers (termed SDFCN) for multichannel SE that operates in the time domain. We also propose an extended version of SDFCN, called the residual SDFCN (termed rSDFCN). The proposed methods are evaluated on two multichannel SE tasks, namely the dual-channel inner-ear microphones SE task and the distributed microphones SE task. The experimental results confirm the outstanding denoising capability of the proposed SE systems on both tasks and the benefits of using the residual architecture on the overall SE performance.
Background noise is a major source of quality impairments in Voice over Internet Protocol (VoIP) and Public Switched Telephone Network (PSTN) calls. Recent work shows the efficacy of deep learning for noise suppression, but the datasets have been relatively small compared to those used in other domains (e.g., ImageNet) and the associated evaluations have been more focused. In order to better facilitate deep learning research in Speech Enhancement, we present a noisy speech dataset (MS-SNSD) that can scale to arbitrary sizes depending on the number of speakers, noise types, and Speech to Noise Ratio (SNR) levels desired. We show that increasing dataset sizes increases noise suppression performance as expected. In addition, we provide an open-source evaluation methodology to evaluate the results subjectively at scale using crowdsourcing, with a reference algorithm to normalize the results. To demonstrate the dataset and evaluation framework we apply it to several noise suppressors and compare the subjective Mean Opinion Score (MOS) with objective quality measures such as SNR, PESQ, POLQA, and VISQOL and show why MOS is still required. Our subjective MOS evaluation is the first large scale evaluation of Speech Enhancement algorithms that we are aware of.
Recurrent neural networks using the LSTM architecture can achieve significant single-channel noise reduction. It is not obvious, however, how to apply them to multi-channel inputs in a way that can generalize to new microphone configurations. In contrast, spatial clustering techniques can achieve such generalization, but lack a strong signal model. This paper combines the two approaches to attain both the spatial separation performance and generality of multichannel spatial clustering and the signal modeling performance of multiple parallel single-channel LSTM speech enhancers. The system is compared to several baselines on the CHiME3 dataset in terms of speech quality predicted by the PESQ algorithm and word error rate of a recognizer trained on mis-matched conditions, in order to focus on generalization. Our experiments show that by combining the LSTM models with the spatial clustering, we reduce word error rate by 4.6% absolute (17.2% relative) on the development set and 11.2% absolute (25.5% relative) on test set compared with spatial clustering system, and reduce by 10.75% (32.72% relative) on development set and 6.12% absolute (15.76% relative) on test data compared with LSTM model.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا