Do you want to publish a course? Click here

Audio-visual Speech Enhancement Using Conditional Variational Auto-Encoders

176   0   0.0 ( 0 )
 Added by Radu Horaud P
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Variational auto-encoders (VAEs) are deep generative latent variable models that can be used for learning the distribution of complex data. VAEs have been successfully used to learn a probabilistic prior over speech signals, which is then used to perform speech enhancement. One advantage of this generative approach is that it does not require pairs of clean and noisy speech signals at training. In this paper, we propose audio-visual variants of VAEs for single-channel and speaker-independent speech enhancement. We develop a conditional VAE (CVAE) where the audio speech generative process is conditioned on visual information of the lip region. At test time, the audio-visual speech generative model is combined with a noise model based on nonnegative matrix factorization, and speech enhancement relies on a Monte Carlo expectation-maximization algorithm. Experiments are conducted with the recently published NTCD-TIMIT dataset as well as the GRID corpus. The results confirm that the proposed audio-visual CVAE effectively fuses audio and visual information, and it improves the speech enhancement performance compared with the audio-only VAE model, especially when the speech signal is highly corrupted by noise. We also show that the proposed unsupervised audio-visual speech enhancement approach outperforms a state-of-the-art supervised deep learning method.



rate research

Read More

Dynamical variational auto-encoders (DVAEs) are a class of deep generative models with latent variables, dedicated to time series data modeling. DVAEs can be considered as extensions of the variational autoencoder (VAE) that include the modeling of temporal dependencies between successive observed and/or latent vectors in data sequences. Previous work has shown the interest of DVAEs and their better performance over the VAE for speech signals (spectrogram) modeling. Independently, the VAE has been successfully applied to speech enhancement in noise, in an unsupervised noise-agnostic set-up that does not require the use of a parallel dataset of clean and noisy speech samples for training, but only requires clean speech signals. In this paper, we extend those works to DVAE-based single-channel unsupervised speech enhancement, hence exploiting both speech signals unsupervised representation learning and dynamics modeling. We propose an unsupervised speech enhancement algorithm based on the most general form of DVAEs, that we then adapt to three specific DVAE models to illustrate the versatility of the framework. More precisely, we combine DVAE-based speech priors with a noise model based on nonnegative matrix factorization, and we derive a variational expectation-maximization (VEM) algorithm to perform speech enhancement. Experimental results show that the proposed approach based on DVAEs outperforms its VAE counterpart and a supervised speech enhancement baseline.
Speech enhancement (SE) aims to reduce noise in speech signals. Most SE techniques focus only on addressing audio information. In this work, inspired by multimodal learning, which utilizes data from different modalities, and the recent success of convolutional neural networks (CNNs) in SE, we propose an audio-visual deep CNNs (AVDCNN) SE model, which incorporates audio and visual streams into a unified network model. We also propose a multi-task learning framework for reconstructing audio and visual signals at the output layer. Precisely speaking, the proposed AVDCNN model is structured as an audio-visual encoder-decoder network, in which audio and visual data are first processed using individual CNNs, and then fused into a joint network to generate enhanced speech (the primary task) and reconstructed images (the secondary task) at the output layer. The model is trained in an end-to-end manner, and parameters are jointly learned through back-propagation. We evaluate enhanced speech using five instrumental criteria. Results show that the AVDCNN model yields a notably superior performance compared with an audio-only CNN-based SE model and two conventional SE approaches, confirming the effectiveness of integrating visual information into the SE process. In addition, the AVDCNN model also outperforms an existing audio-visual SE model, confirming its capability of effectively combining audio and visual information in SE.
226 - Peng Zhang , Jiaming Xu , Jing shi 2020
Speech separation aims to separate individual voice from an audio mixture of multiple simultaneous talkers. Although audio-only approaches achieve satisfactory performance, they build on a strategy to handle the predefined conditions, limiting their application in the complex auditory scene. Towards the cocktail party problem, we propose a novel audio-visual speech separation model. In our model, we use the face detector to detect the number of speakers in the scene and use visual information to avoid the permutation problem. To improve our models generalization ability to unknown speakers, we extract speech-related visual features from visual inputs explicitly by the adversarially disentangled method, and use this feature to assist speech separation. Besides, the time-domain approach is adopted, which could avoid the phase reconstruction problem existing in the time-frequency domain models. To compare our models performance with other models, we create two benchmark datasets of 2-speaker mixture from GRID and TCDTIMIT audio-visual datasets. Through a series of experiments, our proposed model is shown to outperform the state-of-the-art audio-only model and three audio-visual models.
In this paper we address the problem of enhancing speech signals in noisy mixtures using a source separation approach. We explore the use of neural networks as an alternative to a popular speech variance model based on supervised non-negative matrix factorization (NMF). More precisely, we use a variational autoencoder as a speaker-independent supervised generative speech model, highlighting the conceptual similarities that this approach shares with its NMF-based counterpart. In order to be free of generalization issues regarding the noisy recording environments, we follow the approach of having a supervised model only for the target speech signal, the noise model being based on unsupervised NMF. We develop a Monte Carlo expectation-maximization algorithm for inferring the latent variables in the variational autoencoder and estimating the unsupervised model parameters. Experiments show that the proposed method outperforms a semi-supervised NMF baseline and a state-of-the-art fully supervised deep learning approach.
In this paper, we propose a source separation method that is trained by observing the mixtures and the class labels of the sources present in the mixture without any access to isolated sources. Since our method does not require source class labels for every time-frequency bin but only a single label for each source constituting the mixture signal, we call this scenario as weak class supervision. We associate a variational autoencoder (VAE) with each source class within a non-negative (compositional) model. Each VAE provides a prior model to identify the signal from its associated class in a sound mixture. After training the model on mixtures, we obtain a generative model for each source class and demonstrate our method on one-second mixtures of utterances of digits from 0 to 9. We show that the separation performance obtained by source class supervision is as good as the performance obtained by source signal supervision.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا