Do you want to publish a course? Click here

Saturn atmospheric dynamics one year after Cassini: Long-lived features and time variations in the drift of the Hexagon

102   0   0.0 ( 0 )
 Added by Ricardo Hueso
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine Saturns atmosphere with observations from ground-based telescopes and Hubble Space Telescope (HST). We present a detailed analysis of observations acquired during 2018. A system of polar storms that appeared in the planet in March 2018 and remained active with a complex phenomenology at least until Sept. is analyzed elsewhere (Sanchez-Lavega et al., in press , 2019). Many of the cloud features in 2018 are long-lived and can be identified in images in 2017, and in some cases, for up to a decade using also Cassini ISS images. Without considering the polar storms, the most interesting long-lived cloud systems are: i) A bright spot in the EZ that can be tracked continuously since 2014 with a zonal velocity of 444 m/s in 2014 and 452 m/s in 2018. This velocity is different from the zonal winds at the cloud level at its latitude during the Cassini mission, and is closer to zonal winds obtained at the time of the Voyager flybys and zonal winds from Cassini VIMS infrared images of the lower atmosphere. ii) A large Anticyclone Vortex, here AV, that formed after the GWS of 2010-2011. This vortex has changed significantly in visual contrast, drift rate and latitude with minor changes in size over the last years. iii) A system of subpolar vortices present at least since 2011. These vortices follow drift rates consistent with zonal winds obtained by Cassini. We also present the positions of the vertices of the North polar hexagon from 2015 to 2018 compared with previous analyses during Cassini (2007-2014), observations with HST, and Voyager data in 1980-1981 to explore the long-term hexagons drift rate. Variations in the drift rate cannot be fit by seasonal changes. Instead, the different drift rates reinforce the role of the North Polar Spot that was present in the Voyager epoch to cause a faster drift rate of the hexagon at that time compared with the current one.



rate research

Read More

134 - D. L. Jones 2010
The planetary ephemeris is an essential tool for interplanetary spacecraft navigation, studies of solar system dynamics (including, for example, barycenter corrections for pulsar timing ephemeredes), the prediction of occultations, and tests of general relativity. We are carrying out a series of astrometric VLBI observations of the Cassini spacecraft currently in orbit around Saturn, using the Very Long Baseline Array (VLBA). These observations provide positions for the center of mass of Saturn in the International Celestial Reference Frame (ICRF) with accuracies ~0.3 milli-arcsecond (1.5 nrad), or about 2 km at the average distance of Saturn. This paper reports results from eight observing epochs between 2006 October and 2009 April. These data are combined with two VLBA observations by other investigators in 2004 and a Cassini-based gravitational deflection measurement by Fomalont et al. in 2009 to constrain a new ephemeris (DE 422). The DE 422 post-fit residuals for Saturn with respect to the VLBA data are generally 0.2 mas, but additional observations are needed to improve the positions of all of our phase reference sources to this level. Over time we expect to be able to improve the accuracy of all three coordinates in the Saturn ephemeris (latitude, longitude, and range) by a factor of at least three. This will represent a significant improvement not just in the Saturn ephemeris but also in the link between the inner and outer solar system ephemeredes and in the link to the inertial ICRF.
Submillimeter emission lines of carbon monoxide (CO) in Titans atmosphere provide excellent probes of atmospheric temperature due to the molecules long chemical lifetime and stable, well constrained volume mixing ratio. Here we present the analysis of 4 datasets obtained with the Atacama Large Millimeter/Submillimeter Array (ALMA) from 2012 to 2015 that contain strong CO rotational transitions. Utilizing ALMAs high spatial resolution in the 2012, 2014, and 2015 observations, we extract spectra from 3 separate regions on Titans disk using datasets with beam sizes of ~0.3. Temperature profiles retrieved by the NEMESIS radiative transfer code are compared to Cassini Composite Infrared Spectrometer (CIRS) and radio occultation science results from similar latitude regions. Small seasonal variations in atmospheric temperature are present from 2012 to 2015 in the stratosphere and mesosphere (~100-500 km) of spatially resolved regions. We measure the stratopause (320 km) to increase in temperature by 5 K in northern latitudes from 2012-2015, while temperatures rise throughout the stratosphere at lower latitudes. While retrieved temperature profiles cover a range of latitudes in these observations, deviations from CIRS nadir maps and radio occultation measurements convolved with the ALMA beam-footprint are not found to be statistically significant, and discrepancies are often found to be less than 5 K throughout the atmosphere. ALMAs excellent sensitivity in the lower stratosphere (60-300 km) provides a highly complementary dataset to contemporary CIRS and radio science observations. The demonstrated utility of CO emission lines in the submillimeter as a tracer of Titans atmospheric temperature lays the groundwork for future studies of other molecular species, as temperature profiles are found to consistently vary with latitude in all three years by up to 15 K.
101 - R. Hueso , I. de Pater , A. Simon 2017
Since 2013, observations of Neptune with small telescopes have resulted in several detections of long-lived bright atmospheric features that have also been observed by large telescopes such as Keck II or Hubble. The combination of both types of images allows the study of the long term evolution of major cloud systems in the planet. In 2013 and 2014 two bright features were present on the planet at southern mid latitudes. These may have merged in late 2014, possibly leading to the formation of a single bright feature observed during 2015 at the same latitude. This cloud system was first observed in January 2015 and nearly continuously from July to December 2015 in observations with telescopes in the 2 to 10 meter class and in images from amateur astronomers. These images show the bright spot as a compact feature at 40.1 deg South planetographic latitude well resolved from a nearby bright zonal band that extended from 42 deg South to 20 deg South. Tracking its motion from July to November 2015 suggests a longitudinal oscillation of 16 deg in amplitude with a 90 day period, typical of dark spots on Neptune and similar to the Great Red Spot oscillation in Jupiter. The limited time covered by high-resolution observations only covers one full oscillation and other interpretations of the changing motions could be possible. HST images in September 2015 show the presence of a dark spot at short wavelengths in the southern flank of the bright cloud observed throughout 2015.
138 - Aniello Mennella 2011
The ESA Planck satellite, launched on May 14th, 2009, is the third generation space mission dedicated to the measurement of the Cosmic Microwave Background (CMB), the first light in the Universe. Planck observes the full sky in nine frequency bands from 30 to 857 GHz and is designed to measure the CMB anisotropies with an unprecedented combination of sensitivity, angular resolution and control of systematic effects. In this presentation we summarise the Planck instruments performance and discuss the main scientific results obtained after one year of operations in the fields of galactic and extragalactic astrophysics.
Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray showers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra $U(1)$ gauge symmetry, and a combination of both in a $U(1)_{B-L}$ model. Our results are shown as a function of the production rate and the lifetime of the corresponding long-lived particles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا