Do you want to publish a course? Click here

HaloSat -- A CubeSat to Study the Hot Galactic Halo

102   0   0.0 ( 0 )
 Added by Philip Kaaret
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

HaloSat is a small satellite (CubeSat) designed to map soft X-ray oxygen line emission across the sky in order to constrain the mass and spatial distribution of hot gas in the Milky Way. The goal of HaloSat is to help determine if hot gas gravitationally bound to individual galaxies makes a significant contribution to the cosmological baryon budget. HaloSat was deployed from the International Space Station in July 2018 and began routine science operations in October 2018. We describe the goals and design of the mission, the on-orbit performance of the science instrument, and initial observations.



rate research

Read More

Application of cubesats in astronomical observations has been getting more and more mature in recent years. Here we report a concept study of a small Compton polarimeter to fly on a cubesat for observing polarization of soft gamma-rays from a black-hole X-ray binary, Cygnus X-1. Polarization states provide very useful diagnostics on the emission mechanism and the origin of those gamma rays. In our study, we conducted Monte Carlo simulations to decide the basic design of this small polarimeter. Silicon detectors and cerium bromide scintillators were employed in this study. We estimated its on-axis Compton efficiency at different energies and its data telemetry requirement when flying in a low earth orbit. Our results indicate that it is feasible to achieve high signal-to-noise ratio for observing Cyg X-1 with such a small instrument. Based on this study, we will proceed to have a more realistic design and look for opportunities of a cubesat space mission.
Galaxies are surrounded by halos of hot gas whose mass and origin remain unknown. One of the most challenging properties to measure is the metallicity, which constrains both of these. We present a measurement of the metallicity around NGC 891, a nearby, edge-on, Milky Way analog. We find that the hot gas is dominated by low metallicity gas near the virial temperature at $kT=0.20pm0.01$ keV and $Z/Z_{odot} = 0.14pm0.03$(stat)$^{+0.08}_{-0.02}$(sys), and that this gas co-exists with hotter ($kT=0.71pm0.04$ keV) gas that is concentrated near the star-forming regions in the disk. Model choices lead to differences of $Delta Z/Z_{odot} sim 0.05$, and higher $S/N$ observations would be limited by systematic error and plasma emission model or abundance ratio choices. The low metallicity gas is consistent with the inner part of an extended halo accreted from the intergalactic medium, which has been modulated by star formation. However, there is much more cold gas than hot gas around NGC 891, which is difficult to explain in either the accretion or supernova-driven outflow scenarios. We also find a diffuse nonthermal excess centered on the galactic center and extending to 5 kpc above the disk with a 0.3-10 keV $L_X = 3.1times 10^{39}$ erg s$^{-1}$. This emission is inconsistent with inverse Compton scattering or single-population synchrotron emission, and its origin remains unclear.
HERMES (High Energy Rapid Modular Ensemble of Satellites) Technological and Scientific pathfinder is a space borne mission based on a LEO constellation of nano-satellites. The 3U CubeSat buses host new miniaturized detectors to probe the temporal emission of bright high-energy transients such as Gamma-Ray Bursts (GRBs). Fast transient localization, in a field of view of several steradians and with arcmin-level accuracy, is gained by comparing time delays among the same event detection epochs occurred on at least 3 nano-satellites. With a launch date in 2022, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. In this paper we will illustrate the HERMES payload design, highlighting the technical solutions adopted to allow a wide-energy-band and sensitive X-ray and gamma-ray detector to be accommodated in a CubeSat 1U volume together with its complete control electronics and data handling system.
The Colorado Ultraviolet Transit Experiment (CUTE) is a near-UV (2550 - 3300 Angstrom) 6U cubesat mission designed to monitor transiting hot Jupiters to quantify their atmospheric mass loss and magnetic fields. CUTE will probe both atomic (Mg and Fe) and molecular (OH) lines for evidence of enhanced transit absorption, and to search for evidence of early ingress due to bow shocks ahead of the planets orbital motion. As a dedicated mission, CUTE will observe more than 100 spectroscopic transits of hot Jupiters over a nominal seven month mission. This represents the equivalent of more than 700 orbits of the only other instrument capable of these measurements, the Hubble Space Telescope. CUTE efficiently utilizes the available cubesat volume by means of an innovative optical design to achieve a projected effective area of 28 sq. cm, low instrumental background, and a spectral resolving power of 3000 over the primary science bandpass. These performance characteristics enable CUTE to discern transit depths between 0.1 - 1% in individual spectral absorption lines. We present the CUTE optical and mechanical design, a summary of the science motivation and expected results, and an overview of the projected fabrication, calibration and launch timeline.
The Star-Planet Activity Research CubeSat (SPARCS) is a NASA-funded astrophysics mission, devoted to the study of the ultraviolet (UV) time-domain behavior in low-mass stars. Given their abundance and size, low-mass stars are important targets in the search for habitable-zone, exoplanets. However, not enough is known about the stars flare and quiescent emission, which powers photochemical reactions on the atmospheres of possible planets. Over its initial 1-year mission, SPARCS will stare at ~10 stars in order to measure short- (minutes) and long- (months) term variability simultaneously in the near-UV (NUV - lam = 280 nm) and far-UV (FUV - lam = 162 nm). The SPARCS payload consists of a 9-cm reflector telescope paired with two high-sensitivity 2D-doped CCDs. The detectors are kept passively cooled at 238K, in order to reduce dark-current contribution. The filters have been selected to provide strong rejection of longer wavelengths, where most of the starlight is emitted. The payload will be integrated within a 6U CubeSat to be placed on a Sun-synchronous terminator orbit, allowing for long observing stares for all targets. Launch is expected to occur not earlier than October 2021.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا