No Arabic abstract
Galaxies are surrounded by halos of hot gas whose mass and origin remain unknown. One of the most challenging properties to measure is the metallicity, which constrains both of these. We present a measurement of the metallicity around NGC 891, a nearby, edge-on, Milky Way analog. We find that the hot gas is dominated by low metallicity gas near the virial temperature at $kT=0.20pm0.01$ keV and $Z/Z_{odot} = 0.14pm0.03$(stat)$^{+0.08}_{-0.02}$(sys), and that this gas co-exists with hotter ($kT=0.71pm0.04$ keV) gas that is concentrated near the star-forming regions in the disk. Model choices lead to differences of $Delta Z/Z_{odot} sim 0.05$, and higher $S/N$ observations would be limited by systematic error and plasma emission model or abundance ratio choices. The low metallicity gas is consistent with the inner part of an extended halo accreted from the intergalactic medium, which has been modulated by star formation. However, there is much more cold gas than hot gas around NGC 891, which is difficult to explain in either the accretion or supernova-driven outflow scenarios. We also find a diffuse nonthermal excess centered on the galactic center and extending to 5 kpc above the disk with a 0.3-10 keV $L_X = 3.1times 10^{39}$ erg s$^{-1}$. This emission is inconsistent with inverse Compton scattering or single-population synchrotron emission, and its origin remains unclear.
Low-frequency radio continuum observations of edge-on galaxies are ideal to study cosmic-ray electrons (CREs) in halos via radio synchrotron emission and to measure magnetic field strengths. We obtained new observations of the edge-on spiral galaxy NGC 891 at 129-163 MHz with the LOw Frequency ARray (LOFAR) and at 13-18 GHz with the Arcminute Microkelvin Imager (AMI) and combine them with recent high-resolution Very Large Array (VLA) observations at 1-2 GHz, enabling us to study the radio continuum emission over two orders of magnitude in frequency. The spectrum of the integrated nonthermal flux density can be fitted by a power law with a spectral steepening towards higher frequencies or by a curved polynomial. Spectral flattening at low frequencies due to free-free absorption is detected in star-forming regions of the disk. The mean magnetic field strength in the halo is 7 +- 2 $mu$G. The scale heights of the nonthermal halo emission at 146 MHz are larger than those at 1.5 GHz everywhere, with a mean ratio of 1.7 +- 0.3, indicating that spectral ageing of CREs is important and that diffusive propagation dominates. The halo scale heights at 146 MHz decrease with increasing magnetic field strengths which is a signature of dominating synchrotron losses of CREs. On the other hand, the spectral index between 146 MHz and 1.5 GHz linearly steepens from the disk to the halo, indicating that advection rather than diffusion is the dominating CRE transport process. This issue calls for refined modelling of CRE propagation.
We present infrared spectroscopy from the Spitzer Space Telescope at one disk position and two positions at a height of 1 kpc from the disk in the edge-on spiral NGC 891, with the primary goal of studying halo ionization. Our main result is that the [Ne III]/[Ne II] ratio, which provides a measure of the hardness of the ionizing spectrum free from the major problems plaguing optical line ratios, is enhanced in the extraplanar pointings relative to the disk pointing. Using a 2D Monte Carlo-based photo-ionization code which accounts for the effects of radiation field hardening, we find that this trend cannot be reproduced by any plausible photo-ionization model, and that a secondary source of ionization must therefore operate in gaseous halos. We also present the first spectroscopic detections of extraplanar PAH features in an external normal galaxy. If they are in an exponential layer, very rough emission scale-heights of 330-530 pc are implied for the various features. Extinction may be non-negligible in the midplane and reduce these scale-heights significantly. There is little significant variation in the relative emission from the various features between disk and extraplanar environment. Only the 17.4 micron feature is significantly enhanced in the extraplanar gas compared to the other features, possibly indicating a preference for larger PAHs in the halo.
We present deep ACS images of 3 fields in the edge-on disk galaxy NGC 891, which extend from the plane of the disk to 12 kpc, and out to 25 kpc along the major axis. The photometry of individual stars reaches 2.5 magnitudes below the tip of the RGB. We use the astrophotometric catalogue to probe the stellar content and metallicity distribution across the thick disk and spheroid of NGC 891. The CMDs of thick disk and spheroid population are dominated by old RGB stars with a wide range of metallicities, from a metal-poor tail at [Fe/H] ~ -2.4 dex, up to about half-solar metallicity. The peak of the MDF of the thick disk is at -0.9 dex. The inner parts of the thick disk, within 14 kpc along the major axis show no vertical colour/metallicity gradient. In the outer parts, a mild vertical gradient of Delta(V-I)/Delta|Z| = 0.1 +/- 0.05 kpc^-1 is detected. This gradient is however accounted for by the mixing with the metal poor halo stars. No metallicity gradient along the major axis is present for thick disk stars, but strong variations of about 0.35 dex around the mean of [Fe/H] = -1.13 dex are found. The properties of the asymmetric MDFs of the thick disk stars show no significant changes in both the radial and the vertical directions. The stellar populations at solar cylinder-like distances show strikingly different properties from those of the Galaxy, suggesting that the accretion histories of both galaxies have been different. The spheroid population shows remarkably uniform stellar population properties. The median metallicity of the halo stellar population shows a shallow gradient from about -1.15 dex in the inner parts to -1.27 dex at 24 kpc distance from the centre. Similar to the thick disk stars, large variations around the mean relation are present.
We propose a novel method to constrain the Milky Way (MW) mass $M_{rm vir}$ with its corona temperature observations. For a given corona density profile, one can derive its temperature distribution assuming a generalized equilibrium model with non-thermal pressure support. While the derived temperature profile decreases substantially with radius, the X-ray-emission-weighted average temperature, which depends most sensitively on $M_{rm vir}$, is quite uniform toward different sight lines, consistent with X-ray observations. For an Navarro-Frenk-White (NFW) total matter distribution, the corona density profile should be cored, and we constrain $M_{rm vir}=(1.19$ - $2.95) times 10^{12} M_{rm sun}$. For a total matter distribution contributed by an NFW dark matter profile and central baryons, the corona density profile should be cuspy and $M_{rm vir,dm}=(1.34$ - $5.44) times 10^{12} M_{rm sun}$. Non-thermal pressure support leads to even higher values of $M_{rm vir}$, while a lower MW mass may be possible if the corona is accelerating outward. This method is independent of the total corona mass, its metallicity, and temperature at very large radii.
We report on Gemini/GMOS observations of two newly discovered globular clusters in the outskirts of M31. These objects, PAndAS-7 and PAndAS-8, lie at a galactocentric radius of ~87 kpc and are projected, with separation ~19 kpc, onto a field halo substructure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 +/- 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.