Do you want to publish a course? Click here

Magnetic correlations in the pressure-induced superconductor CrAs investigated by $^{75}$As nuclear magnetic resonance

101   0   0.0 ( 0 )
 Added by Hisashi Kotegawa
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report $^{75}$As-NMR results for CrAs under pressure, which shows superconductivity adjoining a helimagnetically ordered state. We successfully evaluated the Knight shift from the spectrum, which is strongly affected by the quadrupole interaction. The Knight shift shows the remarkable feature that the uniform spin susceptibility increases toward low temperatures in the paramagnetic state. This is in sharp contrast to CrAs at ambient pressure, and also to cuprates and Fe pnictides, where antiferromagnetic correlations are dominant. Superconductivity emerges in CrAs under unique magnetic correlations, which probably originate in the three-dimensional zigzag structure of its nonsymmorphic symmetry.



rate research

Read More

168 - J. Cui , P. Wiecki , S. Ran 2016
Recent nuclear magnetic resonance (NMR) measurements revealed the coexistence of stripe-type antiferromagnetic (AFM) and ferromagnetic (FM) spin correlations in both the hole- and electron-doped BaFe$_2$As$_2$ families of iron-pnictide superconductors by a Korringa ratio analysis. Motivated by the NMR work, we investigate the possible existence of FM fluctuations in another iron pnictide superconducting family, Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$. We re-analyzed our previously reported data in terms of the Korringa ratio and found clear evidence for the coexistence of stripe-type AFM and FM spin correlations in the electron-doped CaFe$_2$As$_2$ system. These NMR data indicate that FM fluctuations exist in general in iron-pnictide superconducting families and thus must be included to capture the phenomenology of the iron pnictides.
Pressure-induced superconductivity was recently discovered in the binary helimagnet CrAs. We report the results of measurements of nuclear quadrupole resonance for CrAs under pressure. In the vicinity of the critical pressure P_c between the helimagnetic (HM) and paramagnetic (PM) phases, a phase separation is observed. The large internal field remaining in the phase-separated HM state indicates that the HM phase disappears through a strong first-order transition. This indicates the absence of a quantum critical point in CrAs; however, the nuclear spin-lattice relaxation rate 1/T_1 reveals that substantial magnetic fluctuations are present in the PM state. The absence of a coherence effect in 1/T_1 in the superconducting state provides evidence that CrAs is the first Cr-based unconventional superconductor.
We present a ^{115}In NMR study of the quasi two-dimensional heavy-fermion superconductor CeCoIn_5 believed to host a Fulde-Ferrel-Larkin-Ovchinnkov (FFLO) state. In the vicinity of the upper critical field and with a magnetic field applied parallel to the ab-plane, the NMR spectrum exhibits a dramatic change below T*(H) which well coincides with the position of reported anomalies in specific heat and ultrasound velocity. We argue that our results provide the first microscopic evidence for the occurrence of a spatially modulated superconducting order parameter expected in a FFLO state. The NMR spectrum also implies an anomalous electronic structure of vortex cores.
190 - M. Klanjsek , P. Jeglic , B. Lv 2010
We report a $^{23}$Na and $^{75}$As nuclear magnetic resonance (NMR) investigation of Na$_{x}$FeAs series ($x=1$, 0.9, 0.8) exhibiting a spin-density wave (SDW) order below $T_{rm SDW}=45$, 50 and 43 K for $x=1$, 0.9, 0.8, respectively, and a bulk superconductivity below $T_capprox 12$ K for x=0.9. Below $T_{rm SDW}$, a spin-lattice relaxation reveals the presence of gapless particle-hole excitations in the whole $x$ range, meaning that a portion of the Fermi surface remains gapless. The superconducting fraction as deduced from the bulk susceptibility scales with this portion, while the SDW order parameter as deduced from the NMR linewidth scales inversely with it. The NMR lineshape can only be reproduced assuming an incommensurate (IC) SDW. These findings qualitatively correspond to the mean-field models of competing interband magnetism and intraband superconductivity, which lead to an IC SDW order coexisting with superconductivity in part of the phase diagram.
The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important issues which need to be resolved. In the present work, the suppression of magnetism and the occurrence of superconductivity in CrAs as a function of pressure ($p$) were studied by means of muon spin rotation. The magnetism remains bulk up to $psimeq3.5$~kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at $psimeq$7~kbar. At 3.5 kbar superconductivity abruptly appears with its maximum $T_c simeq 1.2$~K which decreases upon increasing the pressure. In the intermediate pressure region ($3.5lesssim plesssim 7$~kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature ($T_c$) and of the superfluid density ($rho_s$). A scaling of $rho_s$ with $T_c^{3.2}$ as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا