Do you want to publish a course? Click here

Distributed Iterative Gating Networks for Semantic Segmentation

140   0   0.0 ( 0 )
 Added by Md Amirul Islam
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we present a canonical structure for controlling information flow in neural networks with an efficient feedback routing mechanism based on a strategy of Distributed Iterative Gating (DIGNet). The structure of this mechanism derives from a strong conceptual foundation and presents a light-weight mechanism for adaptive control of computation similar to recurrent convolutional neural networks by integrating feedback signals with a feed-forward architecture. In contrast to other RNN formulations, DIGNet generates feedback signals in a cascaded manner that implicitly carries information from all the layers above. This cascaded feedback propagation by means of the propagator gates is found to be more effective compared to other feedback mechanisms that use feedback from the output of either the corresponding stage or from the previous stage. Experiments reveal the high degree of capability that this recurrent approach with cascaded feedback presents over feed-forward baselines and other recurrent models for pixel-wise labeling problems on three challenging datasets, PASCAL VOC 2012, COCO-Stuff, and ADE20K.



rate research

Read More

In this paper, we present an approach for Recurrent Iterative Gating called RIGNet. The core elements of RIGNet involve recurrent connections that control the flow of information in neural networks in a top-down manner, and different variants on the core structure are considered. The iterative nature of this mechanism allows for gating to spread in both spatial extent and feature space. This is revealed to be a powerful mechanism with broad compatibility with common existing networks. Analysis shows how gating interacts with different network characteristics, and we also show that more shallow networks with gating may be made to perform better than much deeper networks that do not include RIGNet modules.
We present TDNet, a temporally distributed network designed for fast and accurate video semantic segmentation. We observe that features extracted from a certain high-level layer of a deep CNN can be approximated by composing features extracted from several shallower sub-networks. Leveraging the inherent temporal continuity in videos, we distribute these sub-networks over sequential frames. Therefore, at each time step, we only need to perform a lightweight computation to extract a sub-features group from a single sub-network. The full features used for segmentation are then recomposed by application of a novel attention propagation module that compensates for geometry deformation between frames. A grouped knowledge distillation loss is also introduced to further improve the representation power at both full and sub-feature levels. Experiments on Cityscapes, CamVid, and NYUD-v2 demonstrate that our method achieves state-of-the-art accuracy with significantly faster speed and lower latency.
The recent integration of attention mechanisms into segmentation networks improves their representational capabilities through a great emphasis on more informative features. However, these attention mechanisms ignore an implicit sub-task of semantic segmentation and are constrained by the grid structure of convolution kernels. In this paper, we propose a novel squeeze-and-attention network (SANet) architecture that leverages an effective squeeze-and-attention (SA) module to account for two distinctive characteristics of segmentation: i) pixel-group attention, and ii) pixel-wise prediction. Specifically, the proposed SA modules impose pixel-group attention on conventional convolution by introducing an attention convolutional channel, thus taking into account spatial-channel inter-dependencies in an efficient manner. The final segmentation results are produced by merging outputs from four hierarchical stages of a SANet to integrate multi-scale contexts for obtaining an enhanced pixel-wise prediction. Empirical experiments on two challenging public datasets validate the effectiveness of the proposed SANets, which achieves 83.2% mIoU (without COCO pre-training) on PASCAL VOC and a state-of-the-art mIoU of 54.4% on PASCAL Context.
Transformers have shown impressive performance in various natural language processing and computer vision tasks, due to the capability of modeling long-range dependencies. Recent progress has demonstrated to combine such transformers with CNN-based semantic image segmentation models is very promising. However, it is not well studied yet on how well a pure transformer based approach can achieve for image segmentation. In this work, we explore a novel framework for semantic image segmentation, which is encoder-decoder based Fully Transformer Networks (FTN). Specifically, we first propose a Pyramid Group Transformer (PGT) as the encoder for progressively learning hierarchical features, while reducing the computation complexity of the standard visual transformer(ViT). Then, we propose a Feature Pyramid Transformer (FPT) to fuse semantic-level and spatial-level information from multiple levels of the PGT encoder for semantic image segmentation. Surprisingly, this simple baseline can achieve new state-of-the-art results on multiple challenging semantic segmentation benchmarks, including PASCAL Context, ADE20K and COCO-Stuff. The source code will be released upon the publication of this work.
In this paper, we present a joint multi-task learning framework for semantic segmentation and boundary detection. The critical component in the framework is the iterative pyramid context module (PCM), which couples two tasks and stores the shared latent semantics to interact between the two tasks. For semantic boundary detection, we propose the novel spatial gradient fusion to suppress nonsemantic edges. As semantic boundary detection is the dual task of semantic segmentation, we introduce a loss function with boundary consistency constraint to improve the boundary pixel accuracy for semantic segmentation. Our extensive experiments demonstrate superior performance over state-of-the-art works, not only in semantic segmentation but also in semantic boundary detection. In particular, a mean IoU score of 81:8% on Cityscapes test set is achieved without using coarse data or any external data for semantic segmentation. For semantic boundary detection, we improve over previous state-of-the-art works by 9.9% in terms of AP and 6:8% in terms of MF(ODS).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا