Enlarging the set of hard exclusive reactions to be studied in the framework of QCD collinear factorization opens new possibilities to access generalized parton distributions (GPDs). We studied the photoproduction of a large invariant mass photon-photon or photon-meson pair in the generalized Bjorken regime which may be accessible both at JLab and at the EIC.
The collinear factorization framework allows to describe the exclusive photoproduction of a $gamma,rho$ pair in the generalized Bjorken regime in terms of a perturbatively calculable coefficient function and universal generalized parton distributions. The kinematics are defined by a large invariant mass of the $gamma rho$ pair and a small transverse momentum of the final nucleon. We calculate the scattering amplitude at leading order in $alpha_s$ and the differential cross sections for the process where the $rho-$meson is either longitudinally or transversely polarized, in the kinematics of the near future Jlab experiments. Our estimate of the cross section demonstrates that this process is measurable at JLab 12-GeV.
We propose and study the photoproduction of a $gamma,rho$ pair with a large invariant mass and a small transverse momentum of the final nucleon, as a way to access generalized parton distributions. In the kinematics of JLab 12-GeV, we demonstrate the feasibility of this measurement.
Starting from hyperbolic dispersion relations, we derive a system of Roy--Steiner equations for pion Compton scattering that respects analyticity, unitarity, gauge invariance, and crossing symmetry. It thus maintains all symmetries of the underlying quantum field theory. To suppress the dependence of observables on high-energy input, we also consider once- and twice-subtract
The claim that the light quark mass ratio (m_d - m_u)/m_s can be extracted from the decay width ratio Gamma(eta -> pi^0 pi^+ pi^-)/Gamma(eta -> eta pi^+ pi^-) is critically investigated within a U(3) chiral unitary framework. The influence of the recent VES data on the eta -> eta pi^+ pi^- decay is also discussed.
In this paper we investigate the Exotic Charmonium (EC) production in $gamma gamma$ interactions present in proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN Large Hadron Collider (LHC) energies as well as for the proposed energies of the Future Circular Collider (FCC). Our results demonstrate that the experimental study of these processes is feasible and can be used to constrain the theoretical decay widths and shed some light on the configuration of the considered multiquark states.