Do you want to publish a course? Click here

Production of exotic charmonium in $gamma gamma$ interactions at hadronic colliders

136   0   0.0 ( 0 )
 Added by Victor Goncalves
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we investigate the Exotic Charmonium (EC) production in $gamma gamma$ interactions present in proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN Large Hadron Collider (LHC) energies as well as for the proposed energies of the Future Circular Collider (FCC). Our results demonstrate that the experimental study of these processes is feasible and can be used to constrain the theoretical decay widths and shed some light on the configuration of the considered multiquark states.



rate research

Read More

In this paper we analyse the double vector meson production in photon -- hadron ($gamma h$) interactions at $pp/pA/AA$ collisions and present predictions for the $rhorho$, $J/Psi J/Psi$ and $rho J/Psi$ production considering the double scattering mechanism. We estimate the total cross sections and rapidity distributions at LHC energies and compare our results with the predictions for the double vector meson production in $gamma gamma$ interactions at hadronic colliders. We present predictions for the different rapidity ranges probed by the ALICE, ATLAS, CMS and LHCb Collaborations. Our results demonstrate that the $rhorho$ and $J/Psi J/Psi$ production in $PbPb$ collisions is dominated by the double scattering mechanism, while the two - photon mechanism dominates in $pp$ collisions. Moreover, our results indicate that the analysis of the $rho J/Psi$ production at LHC can be useful to constrain the double scattering mechanism.
In this paper we study leading neutron production in photon - hadron interactions which take place in $pp$ and $pA$ collisions at large impact parameters. Using a model that describes the recent leading neutron data at HERA, we consider exclusive vector meson production in association with a leading neutron in $pp/pA$ collisions at RHIC and LHC energies. The total cross sections and rapidity distributions of $rho$, $phi$ and $J/Psi$ produced together with a leading neutron are computed. Our results indicate that the study of these processes is feasible and that it can be used to improve the understanding of leading neutron processes and of exclusive vector meson production.
Exclusive vector meson photoproduction associated with a leading baryon ($B = n, Delta^+, Delta^0$) in $pp$ and $pA$ collisions at RHIC and LHC energies is investigated using the color dipole formalism and taking into account nonlinear effects in the QCD dynamics. In particular, we compute the cross sections for $rho$, $phi$ and $J/Psi$ production together with a $Delta$ and compare the predictions with those obtained for a leading neutron. Our results show that the $V + Delta$ cross section is almost 30 % of the $V + n$ one. Our results also show that a future experimental analysis of these processes is, in principle, feasible and can be useful to study leading particle production.
Particle production in two-photon interactions at hadronic collisions is becoming increasingly relevant in the LHC physics programme as a way to improve our understanding of the Standard Model and search for signals of New Physics. A key ingredient for the study of these interactions in $pp$ collisions is the description of the photon content of the proton, which allow us to derive predictions for the cross sections associated to events where occur the proton dissociation (non - exclusive processes) and for those where both incident protons remain intact (exclusive processes). In this paper, a detailed comparison of the different models for the elastic and inelastic photon distributions found in the literature is presented and the current theoretical uncertainty is estimated. The impact on the invariant mass distribution for the dimuon production is analyzed. Moreover, the relative contribution of non - exclusive events is estimated and its dependence on the invariant mass of the pair is presented. We demonstrate that the predictions for production of pairs with large invariant mass is strongly dependent on the model assumed to describe the elastic and inelastic photon distributions and that the ratio between non - exclusive and exclusive cross sections present a mild energy dependence. Finally, our results indicate that a future experimental analysis of the non - exclusive events will be useful to constrain the photon content of proton.
We study heavy physics effects on the Higgs production in $gamma gamma $ fusion using the effective Lagrangian approach. We find that the effects coming from new physics may enhance the standard model predictions for the number of events expected in the final states $bar bb$, $WW$, and $ZZ$ up to one order of magnitude, whereas the corresponding number of events for the final state $bar tt$ may be enhanced up to two orders of magnitude.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا