No Arabic abstract
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
Knowledge graph (KG) representation learning methods have achieved competitive performance in many KG-oriented tasks, among which the best ones are usually based on graph neural networks (GNNs), a powerful family of networks that learns the representation of an entity by aggregating the features of its neighbors and itself. However, many KG representation learning scenarios only provide the structure information that describes the relationships among entities, causing that entities have no input features. In this case, existing aggregation mechanisms are incapable of inducing embeddings of unseen entities as these entities have no pre-defined features for aggregation. In this paper, we present a decentralized KG representation learning approach, decentRL, which encodes each entity from and only from the embeddings of its neighbors. For optimization, we design an algorithm to distill knowledge from the model itself such that the output embeddings can continuously gain knowledge from the corresponding original embeddings. Extensive experiments show that the proposed approach performed better than many cutting-edge models on the entity alignment task, and achieved competitive performance on the entity prediction task. Furthermore, under the inductive setting, it significantly outperformed all baselines on both tasks.
Many graph embedding approaches have been proposed for knowledge graph completion via link prediction. Among those, translating embedding approaches enjoy the advantages of light-weight structure, high efficiency and great interpretability. Especially when extended to complex vector space, they show the capability in handling various relation patterns including symmetry, antisymmetry, inversion and composition. However, previous translating embedding approaches defined in complex vector space suffer from two main issues: 1) representing and modeling capacities of the model are limited by the translation function with rigorous multiplication of two complex numbers; and 2) embedding ambiguity caused by one-to-many relations is not explicitly alleviated. In this paper, we propose a relation-adaptive translation function built upon a novel weighted product in complex space, where the weights are learnable, relation-specific and independent to embedding size. The translation function only requires eight more scalar parameters each relation, but improves expressive power and alleviates embedding ambiguity problem. Based on the function, we then present our Relation-adaptive translating Embedding (RatE) approach to score each graph triple. Moreover, a novel negative sampling method is proposed to utilize both prior knowledge and self-adversarial learning for effective optimization. Experiments verify RatE achieves state-of-the-art performance on four link prediction benchmarks.
Representation learning on heterogeneous graphs aims to obtain meaningful node representations to facilitate various downstream tasks, such as node classification and link prediction. Existing heterogeneous graph learning methods are primarily developed by following the propagation mechanism of node representations. There are few efforts on studying the role of relations for improving the learning of more fine-grained node representations. Indeed, it is important to collaboratively learn the semantic representations of relations and discern node representations with respect to different relation types. To this end, in this paper, we propose a novel Relation-aware Heterogeneous Graph Neural Network, namely R-HGNN, to learn node representations on heterogeneous graphs at a fine-grained level by considering relation-aware characteristics. Specifically, a dedicated graph convolution component is first designed to learn unique node representations from each relation-specific graph separately. Then, a cross-relation message passing module is developed to improve the interactions of node representations across different relations. Also, the relation representations are learned in a layer-wise manner to capture relation semantics, which are used to guide the node representation learning process. Moreover, a semantic fusing module is presented to aggregate relation-aware node representations into a compact representation with the learned relation representations. Finally, we conduct extensive experiments on a variety of graph learning tasks, and experimental results demonstrate that our approach consistently outperforms existing methods among all the tasks.
Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental and challenging task. Previous works have approached this problem by augmenting methods for static knowledge graphs to leverage time-dependent representations. However, these methods do not explicitly leverage multi-hop structural information and temporal facts from recent time steps to enhance their predictions. Additionally, prior work does not explicitly address the temporal sparsity and variability of entity distributions in TKGs. We propose the Temporal Message Passing (TeMP) framework to address these challenges by combining graph neural networks, temporal dynamics models, data imputation and frequency-based gating techniques. Experiments on standard TKG tasks show that our approach provides substantial gains compared to the previous state of the art, achieving a 10.7% average relative improvement in Hits@10 across three standard benchmarks. Our analysis also reveals important sources of variability both within and across TKG datasets, and we introduce several simple but strong baselines that outperform the prior state of the art in certain settings.
Smart factories are equipped with machines that can sense their manufacturing environments, interact with each other, and control production processes. Smooth operation of such factories requires that the machines and engineering personnel that conduct their monitoring and diagnostics share a detailed common industrial knowledge about the factory, e.g., in the form of knowledge graphs. Creation and maintenance of such knowledge is expensive and requires automation. In this work we show how machine learning that is specifically tailored towards industrial applications can help in knowledge graph completion. In particular, we show how knowledge completion can benefit from event logs that are common in smart factories. We evaluate this on the knowledge graph from a real world-inspired smart factory with encouraging results.