Do you want to publish a course? Click here

Optimal-Rate Characterisation for Pliable Index Coding using Absent Receivers

66   0   0.0 ( 0 )
 Added by Lawrence Ong
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We characterise the optimal broadcast rate for a few classes of pliable-index-coding problems. This is achieved by devising new lower bounds that utilise the set of absent receivers to construct decoding chains with skipped messages. This work complements existing works by considering problems that are not complete-S, i.e., problems considered in this work do not require that all receivers with a certain side-information cardinality to be either present or absent from the problem. We show that for a certain class, the set of receivers is critical in the sense that adding any receiver strictly increases the broadcast rate.



rate research

Read More

This paper studies pliable index coding, in which a sender broadcasts information to multiple receivers through a shared broadcast medium, and the receivers each have some message a priori and want any message they do not have. An approach, based on receivers that are absent from the problem, was previously proposed to find lower bounds on the optimal broadcast rate. In this paper, we introduce new techniques to obtained better lower bounds, and derive the optimal broadcast rates for new classes of the problems, including all problems with up to four absent receivers.
We study the fundamental problem of index coding under an additional privacy constraint that requires each receiver to learn nothing more about the collection of messages beyond its demanded messages from the server and what is available to it as side information. To enable such private communication, we allow the use of a collection of independent secret keys, each of which is shared amongst a subset of users and is known to the server. The goal is to study properties of the key access structures which make the problem feasible and then design encoding and decoding schemes efficient in the size of the server transmission as well as the sizes of the secret keys. We call this the private index coding problem. We begin by characterizing the key access structures that make private index coding feasible. We also give conditions to check if a given linear scheme is a valid private index code. For up to three users, we characterize the rate region of feasible server transmission and key rates, and show that all feasible rates can be achieved using scalar linear coding and time sharing; we also show that scalar linear codes are sub-optimal for four receivers. The outer bounds used in the case of three users are extended to arbitrary number of users and seen as a generalized version of the well-known polymatroidal bounds for the standard non-private index coding. We also show that the presence of common randomness and private randomness does not change the rate region. Furthermore, we study the case where no keys are shared among the users and provide some necessary and sufficient conditions for feasibility in this setting under a weaker notion of privacy. If the server has the ability to multicast to any subset of users, we demonstrate how this flexibility can be used to provide privacy and characterize the minimum number of server multicasts required.
Index coding, or broadcasting with side information, is a network coding problem of most fundamental importance. In this problem, given a directed graph, each vertex represents a user with a need of information, and the neighborhood of each vertex represents the side information availability to that user. The aim is to find an encoding to minimum number of bits (optimal rate) that, when broadcasted, will be sufficient to the need of every user. Not only the optimal rate is intractable, but it is also very hard to characterize with some other well-studied graph parameter or with a simpler formulation, such as a linear program. Recently there have been a series of works that address this question and provide explicit schemes for index coding as the optimal value of a linear program with rate given by well-studied properties such as local chromatic number or partial clique-covering number. There has been a recent attempt to combine these existing notions of local chromatic number and partial clique covering into a unified notion denoted as the local partial clique cover (Arbabjolfaei and Kim, 2014). We present a generalized novel upper-bound (encoding scheme) - in the form of the minimum value of a linear program - for optimal index coding. Our bound also combines the notions of local chromatic number and partial clique covering into a new definition of the local partial clique cover, which outperforms both the previous bounds, as well as beats the previous attempt to combination. Further, we look at the upper bound derived recently by Thapa et al., 2015, and extend their $n$-$mathsf{GIC}$ (Generalized Interlinked Cycle) construction to $(k,n)$-$mathsf{GIC}$ graphs, which are a generalization of $k$-partial cliques.
Motivated by applications in distributed storage, the storage capacity of a graph was recently defined to be the maximum amount of information that can be stored across the vertices of a graph such that the information at any vertex can be recovered from the information stored at the neighboring vertices. Computing the storage capacity is a fundamental problem in network coding and is related, or equivalent, to some well-studied problems such as index coding with side information and generalized guessing games. In this paper, we consider storage capacity as a natural information-theoretic analogue of the minimum vertex cover of a graph. Indeed, while it was known that storage capacity is upper bounded by minimum vertex cover, we show that by treating it as such we can get a 3/2 approximation for planar graphs, and a 4/3 approximation for triangle-free planar graphs. Since the storage capacity is intimately related to the index coding rate, we get a 2 approximation of index coding rate for planar graphs and 3/2 approximation for triangle-free planar graphs. We also show a polynomial time approximation scheme for the index coding rate when the alphabet size is constant. We then develop a general method of gadget covering to upper bound the storage capacity in terms of the average of a set of vertex covers. This method is intuitive and leads to the exact characterization of storage capacity for various families of graphs. As an illustrative example, we use this approach to derive the exact storage capacity of cycles-with-chords, a family of graphs related to outerplanar graphs. Finally, we generalize the storage capacity notion to include recovery from partial node failures in distributed storage. We show tight upper and lower bounds on this partial recovery capacity that scales nicely with the fraction of failures in a vertex.
We study the index coding problem in the presence of an eavesdropper, where the aim is to communicate without allowing the eavesdropper to learn any single message aside from the messages it may already know as side information. We establish an outer bound on the underlying secure capacity region of the index coding problem, which includes polymatroidal and security constraints, as well as the set of additional decoding constraints for legitimate receivers. We then propose a secure variant of the composite coding scheme, which yields an inner bound on the secure capacity region of the index coding problem. For the achievability of secure composite coding, a secret key with vanishingly small rate may be needed to ensure that each legitimate receiver who wants the same message as the eavesdropper, knows at least two more messages than the eavesdropper. For all securely feasible index coding problems with four or fewer messages, our numerical results establish the secure index coding capacity region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا