Do you want to publish a course? Click here

MONET: Debiasing Graph Embeddings via the Metadata-Orthogonal Training Unit

112   0   0.0 ( 0 )
 Added by John Palowitch
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Are Graph Neural Networks (GNNs) fair? In many real world graphs, the formation of edges is related to certain node attributes (e.g. gender, community, reputation). In this case, standard GNNs using these edges will be biased by this information, as it is encoded in the structure of the adjacency matrix itself. In this paper, we show that when metadata is correlated with the formation of node neighborhoods, unsupervised node embedding dimensions learn this metadata. This bias implies an inability to control for important covariates in real-world applications, such as recommendation systems. To solve these issues, we introduce the Metadata-Orthogonal Node Embedding Training (MONET) unit, a general model for debiasing embeddings of nodes in a graph. MONET achieves this by ensuring that the node embeddings are trained on a hyperplane orthogonal to that of the node metadata. This effectively organizes unstructured embedding dimensions into an interpretable topology-only, metadata-only division with no linear interactions. We illustrate the effectiveness of MONET though our experiments on a variety of real world graphs, which shows that our method can learn and remove the effect of arbitrary covariates in tasks such as preventing the leakage of political party affiliation in a blog network, and thwarting the gaming of embedding-based recommendation systems.



rate research

Read More

Graph embedding methods represent nodes in a continuous vector space, preserving information from the graph (e.g. by sampling random walks). There are many hyper-parameters to these methods (such as random walk length) which have to be manually tuned for every graph. In this paper, we replace random walk hyper-parameters with trainable parameters that we automatically learn via backpropagation. In particular, we learn a novel attention model on the power series of the transition matrix, which guides the random walk to optimize an upstream objective. Unlike previous approaches to attention models, the method that we propose utilizes attention parameters exclusively on the data (e.g. on the random walk), and not used by the model for inference. We experiment on link prediction tasks, as we aim to produce embeddings that best-preserve the graph structure, generalizing to unseen information. We improve state-of-the-art on a comprehensive suite of real world datasets including social, collaboration, and biological networks. Adding attention to random walks can reduce the error by 20% to 45% on datasets we attempted. Further, our learned attention parameters are different for every graph, and our automatically-found values agree with the optimal choice of hyper-parameter if we manually tune existing methods.
Graph embeddings are a ubiquitous tool for machine learning tasks, such as node classification and link prediction, on graph-structured data. However, computing the embeddings for large-scale graphs is prohibitively inefficient even if we are interested only in a small subset of relevant vertices. To address this, we present an efficient graph coarsening approach, based on Schur complements, for computing the embedding of the relevant vertices. We prove that these embeddings are preserved exactly by the Schur complement graph that is obtained via Gaussian elimination on the non-relevant vertices. As computing Schur complements is expensive, we give a nearly-linear time algorithm that generates a coarsened graph on the relevant vertices that provably matches the Schur complement in expectation in each iteration. Our experiments involving prediction tasks on graphs demonstrate that computing embeddings on the coarsened graph, rather than the entire graph, leads to significant time savings without sacrificing accuracy.
Graph neural network (GNN) is a popular tool to learn the lower-dimensional representation of a graph. It facilitates the applicability of machine learning tasks on graphs by incorporating domain-specific features. There are various options for underlying procedures (such as optimization functions, activation functions, etc.) that can be considered in the implementation of GNN. However, most of the existing tools are confined to one approach without any analysis. Thus, this emerging field lacks a robust implementation ignoring the highly irregular structure of the real-world graphs. In this paper, we attempt to fill this gap by studying various alternative functions for a respective module using a diverse set of benchmark datasets. Our empirical results suggest that the generally used underlying techniques do not always perform well to capture the overall structure from a set of graphs.
Graph representation learning has emerged as a powerful technique for addressing real-world problems. Various downstream graph learning tasks have benefited from its recent developments, such as node classification, similarity search, and graph classification. However, prior arts on graph representation learning focus on domain specific problems and train a dedicated model for each graph dataset, which is usually non-transferable to out-of-domain data. Inspired by the recent advances in pre-training from natural language processing and computer vision, we design Graph Contrastive Coding (GCC) -- a self-supervised graph neural network pre-training framework -- to capture the universal network topological properties across multiple networks. We design GCCs pre-training task as subgraph instance discrimination in and across networks and leverage contrastive learning to empower graph neural networks to learn the intrinsic and transferable structural representations. We conduct extensive experiments on three graph learning tasks and ten graph datasets. The results show that GCC pre-trained on a collection of diverse datasets can achieve competitive or better performance to its task-specific and trained-from-scratch counterparts. This suggests that the pre-training and fine-tuning paradigm presents great potential for graph representation learning.
Graph neural networks (GNNs) have been demonstrated to be powerful in modeling graph-structured data. However, training GNNs usually requires abundant task-specific labeled data, which is often arduously expensive to obtain. One effective way to reduce the labeling effort is to pre-train an expressive GNN model on unlabeled data with self-supervision and then transfer the learned model to downstream tasks with only a few labels. In this paper, we present the GPT-GNN framework to initialize GNNs by generative pre-training. GPT-GNN introduces a self-supervised attributed graph generation task to pre-train a GNN so that it can capture the structural and semantic properties of the graph. We factorize the likelihood of the graph generation into two components: 1) Attribute Generation and 2) Edge Generation. By modeling both components, GPT-GNN captures the inherent dependency between node attributes and graph structure during the generative process. Comprehensive experiments on the billion-scale Open Academic Graph and Amazon recommendation data demonstrate that GPT-GNN significantly outperforms state-of-the-art GNN models without pre-training by up to 9.1% across various downstream tasks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا