No Arabic abstract
Social networks are pivotal for learning. Yet, we still lack a full understanding of the mechanisms connecting networks with learning outcomes. Here, we present the results of a large scale study (946 elementary school children from 45 different classrooms) designed to understand the social strategies used by elementary school children. We mapped the social networks of students using both, a non-anonymous version of a prisoners dilemma and a survey of nominated friendships, and compared the strategies played by students with their GPAs. We found that higher GPA students invest more strategically in their relationships, cooperating more generously with friends and less generously with non-friends than lower GPA students. Our findings suggest that the higher selectivity of social capital investments by high performing students may be one of the mechanisms helping them reap the learning benefits of their social networks.
Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students.
In this paper, we provide a statistical analysis of high-resolution contact pattern data within primary and secondary schools as collected by the SocioPatterns collaboration. Students are graphically represented as nodes in a temporally evolving network, in which links represent proximity or interaction between students. This article focuses on link- and node-level statistics, such as the on- and off-durations of links as well as the activity potential of nodes and links. Parametric models are fitted to the on- and off-durations of links, inter-event times and node activity potentials and, based on these, we propose a number of theoretical models that are able to reproduce the collected data within varying levels of accuracy. By doing so, we aim to identify the minimal network-level properties that are needed to closely match the real-world data, with the aim of combining this contact pattern model with epidemic models in future work.
We investigate gender homophily in the spatial proximity of children (6 to 12 years old) in a French primary school, using time-resolved data on face-to-face proximity recorded by means of wearable sensors. For strong ties, i.e., for pairs of children who interact more than a defined threshold, we find statistical evidence of gender preference that increases with grade. For weak ties, conversely, gender homophily is negatively correlated with grade for girls, and positively correlated with grade for boys. This different evolution with grade of weak and strong ties exposes a contrasted picture of gender homophily.
Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6-12 years children), where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices. Data on face-to-face interactions were collected on October 1st and 2nd, 2009. We recorded 77,602 contact events between 242 individuals. Each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis. The observed properties of the contact patterns between school children are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.
Quantitative understanding of relationships between students behavioral patterns and academic performances is a significant step towards personalized education. In contrast to previous studies that mainly based on questionnaire surveys, in this paper, we collect behavioral records from 18,960 undergraduate students smart cards and propose a novel metric, called orderness, which measures the regularity of campus daily life (e.g., meals and showers) of each student. Empirical analysis demonstrates that academic performance (GPA) is strongly correlated with orderness. Furthermore, we show that orderness is an important feature to predict academic performance, which remarkably improves the prediction accuracy even at the presence of students diligence. Based on these analyses, education administrators could better guide students campus lives and implement effective interventions in an early stage when necessary.