No Arabic abstract
The detection and characterization of the Stochastic Gravitational Wave Background (SGWB) is one of the main goals of Gravitational Wave (GW) experiments. The observed SGWB will be the combination of GWs from cosmological (as predicted by many models describing the physics of the early Universe) and astrophysical origins, which will arise from the superposition of GWs from unresolved sources whose signal is too faint to be detected. Therefore, it is important to have a proper modeling of the astrophysical SGWB (ASGWB) in order to disentangle the two signals; moreover, this will provide additional information on astrophysical properties of compact objects. Applying the Cosmic Rulers formalism, we compute the observed ASGWB angular power spectrum, hence using gauge invariant quantities, accounting for all effects intervening between the source and the observer. These are the so-called projection effects, which include Kaiser, Doppler and gravitational potentials effect. Our results show that these projection effects are the most important at the largest scales, and they contribute to up to tens of percent of the angular power spectrum amplitude, with the Kaiser term being the largest at all scales. While the exact impact of these results will depend on instrumental and astrophysical details, a precise theoretical modeling of the ASGWB will necessarily need to include all these projection effects.
A gravitational wave stochastic background of astrophysical origin may have resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity. Its detection would put very strong constrains on the physical properties of compact objects, the initial mass function or the star formation history. On the other hand, it could be a noise that would mask the stochastic background of cosmological origin. We review the main astrophysical processes able to produce a stochastic background and discuss how it may differ from the primordial contribution by its statistical properties. Current detection methods are also presented.
A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of Delta theta ~ 10 mu as would yield a sensitivity level of Omega_gw ~ (Delta theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.
We review the spectral properties of stochastic backgrounds of astrophysical origin and discuss how they may differ from the primordial contribution by their statistical properties. We show that stochastic searches with the next generation of terrestrial interferometers could put interesting constrains on the physical properties of astrophysical populations, such as the ellipticity and magnetic field of magnetars, or the coalescence rate of compact binaries.
We present the first predictions for the angular power spectrum of the astrophysical gravitational wave background constituted of the radiation emitted by all resolved and unresolved astrophysical sources. Its shape and amplitude depend on both the astrophysical properties on galactic scales and on cosmological properties. We show that the angular power spectrum behaves as $C_{ell}propto 1/{ell}$ on large scales and that relative fluctuations of the signal are of order 30% at 100 Hz. We also present the correlations of the astrophysical gravitational wave background with weak-lensing and galaxy distribution. These numerical results pave the way to the study of a new observable at the crossroad between general relativity, astrophysics and cosmology.
This article explores the properties (amplitude and shape) of the angular power spectrum of the anisotropies of the astrophysical gravitational wave background (AGWB) focusing on the signatures of the astrophysical models describing sub-galactic physics. It demonstrates that while some parameters have negligible impact others, and in particular the stellar evolution models, the metallicity and the merger time delay distribution can result in relative differences of order 40% in the angular power spectrum of anisotropies in both the LIGO/Virgo and LISA frequency bands. It is also shown that the monopole and the anisotropic components of the AGWB are complementary and sensitive to different astrophysical parameters. It follows that AGWB anisotropies are a new observable with the potential to provide new astrophysical information that can not be accessed otherwise.