Do you want to publish a course? Click here

Properties of the stochastic astrophysical gravitational wave background: astrophysical sources dependencies

82   0   0.0 ( 0 )
 Added by Cyril Pitrou
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

This article explores the properties (amplitude and shape) of the angular power spectrum of the anisotropies of the astrophysical gravitational wave background (AGWB) focusing on the signatures of the astrophysical models describing sub-galactic physics. It demonstrates that while some parameters have negligible impact others, and in particular the stellar evolution models, the metallicity and the merger time delay distribution can result in relative differences of order 40% in the angular power spectrum of anisotropies in both the LIGO/Virgo and LISA frequency bands. It is also shown that the monopole and the anisotropic components of the AGWB are complementary and sensitive to different astrophysical parameters. It follows that AGWB anisotropies are a new observable with the potential to provide new astrophysical information that can not be accessed otherwise.



rate research

Read More

We show that the anisotropies of the astrophysical stochastic gravitational wave background in the mHz band have a strong dependence on the modelling of galactic and sub-galactic physics. We explore a wide range of self-consistent astrophysical models for stellar evolution and for the distribution of orbital parameters, all calibrated such that they predict the same number of resolved mergers to fit the number of detections during LIGO/Virgo O1+O2 observations runs. We show that different physical choices for the process of black hole collapse and cut-off in the black hole mass distribution give fractional differences in the angular power spectrum of anisotropies up to 50% on all angular scales. We also point out that the astrophysical information which can be extracted from anisotropies is complementary to the isotropic background and individual mergers. These results underline the interest in the anisotropies of the stochastic gravitational wave background as a new and potentially rich field of research, at the cross-road between astrophysics and cosmology.
215 - Tania Regimbau 2011
A gravitational wave stochastic background of astrophysical origin may have resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity. Its detection would put very strong constrains on the physical properties of compact objects, the initial mass function or the star formation history. On the other hand, it could be a noise that would mask the stochastic background of cosmological origin. We review the main astrophysical processes able to produce a stochastic background and discuss how it may differ from the primordial contribution by its statistical properties. Current detection methods are also presented.
188 - T. Regimbau , V. Mandic 2011
We review the spectral properties of stochastic backgrounds of astrophysical origin and discuss how they may differ from the primordial contribution by their statistical properties. We show that stochastic searches with the next generation of terrestrial interferometers could put interesting constrains on the physical properties of astrophysical populations, such as the ellipticity and magnetic field of magnetars, or the coalescence rate of compact binaries.
In the literature different approaches have been proposed to compute the anisotropies of the astrophysical gravitational wave background. The different expressions derived, although starting from our work Cusin, Pitrou, Uzan, Phys.Rev.D96, 103019 (2017) [1], seem to differ. This article compares the various theoretical expressions proposed so far and provides a separate derivation based on a Boltzmann approach. We show that all the theoretical formula in the literature are equivalent and boil down to the one of Ref. [1] when a proper matching of terms and integration by parts are performed. The difference between the various predictions presented for anisotropies in a cosmological context can only lie in the astrophysical modeling of sources, and neither in the theory nor in the cosmological description of the large scale structures. Finally we comment on the gauge invariance of expressions.
We calculate the noise induced in the anisotropies of the astrophysical gravitational-wave background by finite sampling of both the galaxy distribution and the compact binary coalescence event rate. This shot noise leads to a scale-invariant bias term in the angular power spectrum $C_ell$, for which we derive a simple analytical expression. We find that this bias dominates over the true cosmological power spectrum in any reasonable observing scenario, and that only with very long observing times and removal of a large number of foreground sources can the true power spectrum be recovered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا