Do you want to publish a course? Click here

Turan-type reverse Markov inequalities for polynomials with restricted zeros

128   0   0.0 ( 0 )
 Added by Tamas Erdelyi Ph.D.
 Publication date 2019
  fields
and research's language is English
 Authors Tamas Erdelyi




Ask ChatGPT about the research

Let ${cal P}_n^c$ denote the set of all algebraic polynomials of degree at most $n$ with complex coefficients. Let $$D^+ := {z in mathbb{C}: |z| leq 1, , , Im(z) geq 0}$$ be the closed upper half-disk of the complex plane. For integers $0 leq k leq n$ let ${mathcal F}_{n,k}^c$ be the set of all polynomials $P in {mathcal P}_n^c$ having at least $n-k$ zeros in $D^+$. Let $$|f|_A := sup_{z in A}{|f(z)|}$$ for complex-valued functions defined on $A subset {Bbb C}$. We prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 left(frac{n}{k+1}right)^{1/2} leq inf_{P}{frac{|P^{prime}|_{[-1,1]}}{|P|_{[-1,1]}}} leq c_2 left(frac{n}{k+1}right)^{1/2}$$ for all integers $0 leq k leq n$, where the infimum is taken for all $0 otequiv P in {mathcal F}_{n,k}^c$ having at least one zero in $[-1,1]$. This is an essentially sharp reverse Markov-type inequality for the classes ${mathcal F}_{n,k}^c$ extending earlier results of Turan and Komarov from the case $k=0$ to the cases $0 leq k leq n$.



rate research

Read More

97 - Ilia Krasikov 2004
We use Turan type inequalities to give new non-asymptotic bounds on the extreme zeros of orthogonal polynomials in terms of the coefficients of their three term recurrence. Most of our results deal with symmetric polynomials satisfying the three term recurrence $p_{k+1}=x p_k-c_k p_{k-1},$ with a nondecreasing sequence ${c_k}$. As a special case they include a non-asymptotic version of Mate, Nevai and Totik result on the largest zeros of orthogonal polynomials with $c_k=k^{delta} (1+ o(k^{-2/3})).$
90 - Tamas Erdelyi 2018
Let ${mathcal P}_k$ denote the set of all algebraic polynomials of degree at most $k$ with real coefficients. Let ${mathcal P}_{n,k}$ be the set of all algebraic polynomials of degree at most $n+k$ having exactly $n+1$ zeros at $0$. Let $$|f|_A := sup_{x in A}{|f(x)|}$$ for real-valued functions $f$ defined on a set $A subset {Bbb R}$. Let $$V_a^b(f) := int_a^b{|f^{prime}(x)| , dx}$$ denote the total variation of a continuously differentiable function $f$ on an interval $[a,b]$. We prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 frac nkleq min_{P in {mathcal P}_{n,k}}{frac{|P^{prime}|_{[0,1]}}{V_0^1(P)}} leq min_{P in {mathcal P}_{n,k}}{frac{|P^{prime}|_{[0,1]}}{|P(1)|}} leq c_2 left( frac nk + 1 right)$$ for all integers $n geq 1$ and $k geq 1$. We also prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 left(frac nkright)^{1/2} leq min_{P in {mathcal P}_{n,k}}{frac{|P^{prime}(x)sqrt{1-x^2}|_{[0,1]}}{V_0^1(P)}} leq min_{P in {mathcal P}_{n,k}}{frac{|P^{prime}(x)sqrt{1-x^2}|_{[0,1]}}{|P(1)|}} leq c_2 left(frac nk + 1right)^{1/2}$$ for all integers $n geq 1$ and $k geq 1$.
In this paper we shall use the boundary Schwarz lemma of Osserman to obtain some generalizations and refinements of some well known results concerning the maximum modulus of the polynomials with restricted zeros due to Turan, Dubinin and others.
152 - Ilia Krasikov 2011
We establish some new Turans type inequalities for orthogonal polynomials defined by a three-term recurrence with monotonic coefficients. As a corollary we deduce asymptotic bounds on the extreme zeros of orthogonal polynomials with polynomially growing coefficients of the three-term recurrence.
We study reverse triangle inequalities for Riesz potentials and their connection with polarization. This work generalizes inequalities for sup norms of products of polynomials, and reverse triangle inequalities for logarithmic potentials. The main tool used in the proofs is the representation for a power of the farthest distance function as a Riesz potential of a unit Borel measure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا