Do you want to publish a course? Click here

The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) mission

80   0   0.0 ( 0 )
 Added by Angela V. Olinto
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe cosmic neutrinos (CNs) above 20 PeV and ultra-high energy cosmic rays (UHECRs) above 20 EeV over the full sky. The POEMMA mission calls for two identical satellites flying in loose formation, each comprised of a 4-meter wide field-of-view (45 degrees) Schmidt photometer. The hybrid focal surface includes a fast (1 ${mu}$s) ultraviolet camera for fluorescence observations and an ultrafast (10 ns) optical camera for Cherenkov observations. POEMMA will provide new multi-messenger windows onto the most energetic events in the universe, enabling the study of new astrophysics and particle physics at these otherwise inaccessible energies.



rate research

Read More

The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to accurately observe ultra-high-energy cosmic rays (UHECRs) and cosmic neutrinos from space with sensitivity over the full celestial sky. POEMMA will observe the extensive air showers (EASs) from UHECRs and UHE neutrinos above 20 EeV via air fluorescence. Additionally, POEMMA will observe the Cherenkov signal from upward-moving EASs induced by Earth-interacting tau neutrinos above 20 PeV. The POEMMA spacecraft are designed to quickly re-orientate to follow up transient neutrino sources and obtain unparalleled neutrino flux sensitivity. Developed as a NASA Astrophysics Probe-class mission, POEMMA consists of two identical satellites flying in loose formation in 525 km altitude orbits. Each POEMMA instrument incorporates a wide field-of-view (45$^circ$) Schmidt telescope with over 6 m$^2$ of collecting area. The hybrid focal surface of each telescope includes a fast (1~$mu$s) near-ultraviolet camera for EAS fluorescence observations and an ultrafast (10~ns) optical camera for Cherenkov EAS observations. In a 5-year mission, POEMMA will provide measurements that open new multi-messenger windows onto the most energetic events in the universe, enabling the study of new astrophysics and particle physics at these otherwise inaccessible energies.
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is a NASA Astrophysics probe-class mission designed to observe ultra-high energy cosmic rays (UHECRs) and cosmic neutrinos from space. Astro2020 APC white paper: Medium-class Space Particle Astrophysics Project.
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to identify the sources of Ultra-High-Energy Cosmic Rays (UHECRs) and to observe cosmic neutrinos, both with full-sky coverage. Developed as a NASA Astrophysics Probe-class mission, POEMMA consists of two spacecraft flying in a loose formation at 525 km altitude, 28.5 deg inclination orbits. Each spacecraft hosts a Schmidt telescope with a large collecting area and wide field of view. A novel focal plane is optimized to observe both the UV fluorescence signal from extensive air showers (EASs) and the beamed optical Cherenkov signals from EASs. In POEMMA-stereo fluorescence mode, POEMMA will measure the spectrum, composition, and full-sky distribution of the UHECRs above 20 EeV with high statistics along with remarkable sensitivity to UHE neutrinos. The spacecraft are designed to quickly re-orient to a POEMMA-limb mode to observe neutrino emission from Target-of-Opportunity (ToO) transient astrophysical sources viewed just below the Earths limb. In this mode, POEMMA will have unique sensitivity to cosmic neutrino tau events above 20 PeV by measuring the upward-moving EASs induced by the decay of the emerging tau leptons following the interactions of neutrino tau inside the Earth.
The past year has witnessed discovery of the first identified counterparts to a gravitational wave transient (GW 170817A) and a very high-energy neutrino (IceCube-170922A). These source identifications, and ensuing detailed studies, have realized longstanding dreams of astronomers and physicists to routinely carry out observations of cosmic sources by other than electromagnetic means, and inaugurated the era of multi-messenger astronomy. While this new era promises extraordinary physical insights into the universe, it brings with it new challenges, including: highly heterogeneous, high-volume, high-velocity datasets; globe-spanning cross-disciplinary teams of researchers, regularly brought together into transient collaborations; an extraordinary breadth and depth of domain-specific knowledge and computing resources required to anticipate, model, and interpret observations; and the routine need for adaptive, distributed, rapid-response observing campaigns to fully exploit the scientific potential of each source. We argue, therefore, that the time is ripe for the community to conceive and propose an Institute for Multi-Messenger Astrophysics that would coordinate its resources in a sustained and strategic fashion to efficiently address these challenges, while simultaneously serving as a center for education and key supporting activities. In this fashion, we can prepare now to realize the bright future that we see, beyond, through these newly opened windows onto the universe.
Multi-messenger astrophysics is becoming a major avenue to explore the Universe, with the potential to span a vast range of redshifts. The growing synergies between different probes is opening new frontiers, which promise profound insights into several aspects of fundamental physics and cosmology. In this context, THESEUS will play a central role during the 2030s in detecting and localizing the electromagnetic counterparts of gravitational wave and neutrino sources that the unprecedented sensitivity of next generation detectors will discover at much higher rates than the present. Here, we review the most important target signals from multi-messenger sources that THESEUS will be able to detect and characterize, discussing detection rate expectations and scientific impact.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا