Do you want to publish a course? Click here

Measurements of Angle-Resolved Reflectivity of PTFE in Liquid Xenon with IBEX

106   0   0.0 ( 0 )
 Added by Scott Kravitz
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Liquid xenon particle detectors rely on excellent light collection efficiency for their performance. This depends on the high reflectivity of polytetrafluoroethylene (PTFE) at the xenon scintillation wavelength of 178 nm, but the angular dependence of this reflectivity is not well-understood. IBEX is designed to directly measure the angular distribution of xenon scintillation light reflected off PTFE in liquid xenon. These measurements are fully described by a microphysical reflectivity model with few free parameters. Dependence on PTFE type, surface finish, xenon pressure, and wavelength of incident light is explored. Total internal reflection is observed, which results in the dominance of specular over diffuse reflection and a reflectivity near 100% for high angles of incidence.



rate research

Read More

Silicon photomultipliers are regarded as a very promising technology for next-generation, cutting-edge detectors for low-background experiments in particle physics. This work presents systematic reflectivity studies of Silicon Photomultipliers (SiPM) and other samples in liquid xenon at vacuum ultraviolet (VUV) wavelengths. A dedicated setup at the University of Munster has been used that allows to acquire angle-resolved reflection measurements of various samples immersed in liquid xenon with 0.45{deg} angular resolution. Four samples are investigated in this work: one Hamamatsu VUV4 SiPM, one FBK VUV-HD SiPM, one FBK wafer sample and one Large-Area Avalanche Photodiode (LA-APD) from EXO-200. The reflectivity is determined to be 25-36% at an angle of incidence of 20{deg} for the four samples and increases to up to 65% at 70{deg} for the LA-APD and the FBK samples. The Hamamatsu VUV4 SiPM shows a decline with increasing angle of incidence. The reflectivity results will be incorporated in upcoming light response simulations of the nEXO detector.
Understanding reflective properties of materials and photodetection efficiency (PDE) of photodetectors is important for optimizing energy resolution and sensitivity of the next generation neutrinoless double beta decay, direct detection dark matter, and neutrino oscillation experiments that will use noble liquid gases, such as nEXO, DARWIN, DarkSide-20k, and DUNE. Little information is currently available about reflectivity and PDE in liquid noble gases, because such measurements are difficult to conduct in a cryogenic environment and at short enough wavelengths. Here we report a measurement of specular reflectivity and relative PDE of Hamamatsu VUV4 silicon photomultipliers (SiPMs) with 50 micrometer micro-cells conducted with xenon scintillation light (~175 nm) in liquid xenon. The specular reflectivity at 15 deg. incidence of three samples of VUV4 SiPMs is found to be 30.4+/-1.4%, 28.6+/-1.3%, and 28.0+/-1.3%, respectively. The PDE at normal incidence differs by +/-8% (standard deviation) among the three devices. The angular dependence of the reflectivity and PDE was also measured for one of the SiPMs. Both the reflectivity and PDE decrease as the angle of incidence increases. This is the first measurement of an angular dependence of PDE and reflectivity of a SiPM in liquid xenon.
207 - S. Bruenner , D. Cichon , G. Eurin 2020
Long-lived radon daughters are a critical background source in experiments searching for low-energy rare events. Originating from radon in ambient air, radioactive polonium, bismuth and lead isotopes plate-out on materials that are later employed in the experiment. In this paper, we examine cleaning procedures for their capability to remove radon daughters from PTFE surfaces, a material often used in liquid xenon TPCs. We found a large difference between the removal efficiency obtained for the decay chains of $^{222}$Rn and $^{220}$Rn, respectively. This indicates that the plate-out mechanism has an effect on the cleaning success. While the long-lived $^{222}$Rn daughters could be reduced by a factor of ~2, the removal of $^{220}$Rn daughters was up to 10 times more efficient depending on the treatment. Furthermore, the impact of a nitric acid based PTFE cleaning on the liquid xenon purity is investigated in a small-scale liquid xenon TPC.
Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet wavelength region (175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Fluoropolymers, namely ETFE, FEP and PFA were also measured.
As noble liquid time projection chambers grow in size their high voltage requirements increase, and detailed, reproducible studies of dielectric breakdown and the onset of electroluminescence are needed to inform their design. The Xenon Breakdown Apparatus (XeBrA) is a 5-liter cryogenic chamber built to characterize the DC high voltage breakdown behavior of liquid xenon and liquid argon. Electrodes with areas up to 33~cm$^2$ were tested while varying the cathode-anode separation from 1 to 6~mm with a voltage difference up to 75~kV. A power-law relationship between breakdown field and electrode area was observed. The breakdown behavior of liquid argon and liquid xenon within the same experimental apparatus was comparable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا