Do you want to publish a course? Click here

Inclusive productions of $Upsilon(1S,2S,3S)$ and $chi_b(1P,2P,3P)$ via the Higgs boson decay

167   0   0.0 ( 0 )
 Added by Yang Ma
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we carry out the complete $mathcal O(alphaalpha_s^{2})$-order study on the inclusive productions of $Upsilon(nS)$ and $chi_b(nP)$ ($n=1,2,3$) via the Standard Model Higgs boson decay, within the framework of nonrelativistic QCD. The feeddown effects via the higher excited states are found to be substantial. The color-octet $^3S_1^{[8]}$ state related processes consisting of $H^0 to bbar{b}[^3S_1^{[8]}]+g$ and $H^0 to bbar{b}[^3S_1^{[8]}]+Q+bar{Q}$ ($Q=c,b$) play a vital role in the predictions on the decay widths. Moreover, our newly calculated next-to-leading order QCD corrections to $H^0 to bbar{b}[^3S_1^{[8]}]+g$ can enhance its leading-order result by 3-4 times, subsequently magnifying the total $^3S_1^{[8]}$ contributions by about $40%$. Such a remarkable enhancement will to a large extent influence the phenomenological conclusions. For the color-singlet $^3P_J^{[1]}$ state, in addition to $H^{0} to bbar{b}[^3P_J^{[1]}]+b+bar{b}$, the newly introduced light hadrons associated process, $H^{0} to bbar{b}[^3P_J^{[1]}]+g+g$, can also provide non-negligible contributions, especially for $^3P_2^{[1]}$. Summing up all the contributions, we have $mathcal B_{H^0 to chi_b(nP)+X} sim 10^{-6}-10^{-5}$ and $mathcal B_{H^0 to Upsilon(nS)+X} sim 10^{-5}-10^{-4}$, which meets marginally nowadays LHC experimental data and can help in understanding the heavy quarkonium production mechanism as well as the Yukawa couplings.



rate research

Read More

The inclusive $Upsilon(1S,2S,3S)$ photoproduction at the future Circular-Electron-Positron-Collider (CEPC) is studied based on the non-relativistic QCD (NRQCD). Including the contributions from both direct and resolved photons, we present different distributions for $Upsilon(1S,2S,3S)$ production and the results show there will be considerable events, which means that a well measurements on the $Upsilon$ photoprodution could be performed to further study on the heavy quarkonium physics at electron-positron collider in addition to hadron colliders. This supplement study is very important to clarify the current situation of the heavy quarkonium production mechanism.
The dipion transitions $Upsilon(2S,3S,4S) to Upsilon(1S,2S)pipi$ are systematically studied by considering the mechanisms of the hadronization of soft gluons, exchanging the bottomoniumlike $Z_b$ states, and the bottom-meson loops. The strong pion-pion final-state interaction, especially including the channel coupling to $Kbar{K}$ in the $S$-wave, is taken into account in a model-independent way using the dispersion theory. Through fitting to the available experimental data, we extract values of the transition chromopolarizabilities $|alpha_{Upsilon(mS)Upsilon(nS)}|$, which measure the chromoelectric couplings of the bottomonia with soft gluons. It is found that the $Z_b$ exchange has a slight impact on the extracted chromopolarizablity values, and the obtained $|alpha_{Upsilon(2S)Upsilon(1S)}|$ considering the $Z_b$ exchange is $(0.29pm 0.20)~text{GeV}^{-3}$. Our results could be useful in studying the interactions of bottomonium with light hadrons.
Using a sample of 122 million Upsilon(3S) events recorded with the BaBar detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for the $h_b(1P)$ spin-singlet partner of the P-wave chi_{bJ}(1P) states in the sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We observe an excess of events above background in the distribution of the recoil mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width of the observed signal is consistent with experimental resolution, and its significance is 3.1sigma, including systematic uncertainties. We obtain the value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).
64 - M. Artuso , et al 2004
We have studied the inclusive photon spectra in Upsilon(2S) and Upsilon(3S) decays using a large statistics data sample obtained with the CLEO III detector. We present the most precise measurements of electric dipole (E1) photon transition rates and photon energies for Upsilon(2S)->gamma chi_bJ(1P) and Upsilon(3S)->gamma chi_bJ(2P) J=0,1,2. We measure the rate for a rare E1 transition Upsilon(3S)->gamma chi_b0(1P) for the first time. We also set upper limits on the rates for the hindered magnetic dipole (M1) transitions to the eta_b(1S) and eta_b(2S) states.
We report the first evidence for the eta_b(2S) using the h_b(2P)->eta_b(2S)gamma transition and the first observation of the h_b(1P)->eta_b(1S)gamma and h_b(2P)->eta_b(1S)gamma transitions. The mass and width of the eta_b(1S) and eta_b(2S) are measured to be m_etab(1S)=(9402.4+-1.5+-1.8)MeV/c^2, m_etab(2S)=(9999.0+-3.5 +2.8-1.9)MeV/c^2 and Gamma_etab(1S)=(10.8 +4.0-3.7 +4.5-2.0)MeV. We also update the h_b(1P) and h_b(2P) mass measurements. We use a 133.4/fb data sample collected at energies near the Upsilon(5S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا