Do you want to publish a course? Click here

Interferometric observations of warm deuterated methanol in the inner regions of low-mass protostars

88   0   0.0 ( 0 )
 Added by Vianney Taquet
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Methanol is a key species in astrochemistry since it is the most abundant organic molecule in the ISM and is thought to be the mother molecule of many complex organic species. Estimating the deuteration of methanol around young protostars is of crucial importance because it highly depends on its formation mechanisms and the physical conditions during its moment of formation. We analyse dozens of transitions from deuterated methanol isotopologues coming from various existing observational datasets from the IRAM-PdBI and ALMA sub-mm interferometers to estimate the methanol deuteration surrounding three low-mass protostars on Solar System scales. A population diagram analysis allows us to derive a [CH$_2$DOH]/[CH$_3$OH] abundance ratio of 3-6 % and a [CH$_3$OD]/[CH$_3$OH] ratio of 0.4-1.6 % in the warm inner protostellar regions. These values are ten times lower than those derived with previous single-dish observations towards these sources but they are 10-100 times higher than the methanol deuteration measured in massive hot cores. Dust temperature maps obtained from Herschel and Planck observations show that massive hot cores are located in warmer molecular clouds than low-mass sources, with temperature differences of $sim$10 K. Comparison with the predictions of the gas-grain astrochemical model GRAINOBLE shows that such a temperature difference is sufficient to explain the different deuteration observed in low- to high-mass sources, suggesting that the physical conditions of the molecular cloud at the origin of the protostars mostly govern the present observed deuteration of methanol. The methanol deuteration measured in this work is higher by a factor of 5 than the upper limit in methanol deuteration estimated in comet Hale-Bopp, implying that an important reprocessing of the organic material would have occurred in the solar nebula during the formation of the Solar System.



rate research

Read More

Context : Despite the low cosmic abundance of deuterium (D/H ~ 1e-5), large degrees of deuterium fractionation in molecules are observed in star forming regions with enhancements that can reach 13 orders of magnitude, which current models have difficulties to account for. Aims : Multi-isotopologue observations are a very powerful constraint for chemical models. The aim of our observations is to understand the processes forming the observed large abundances of methanol and formaldehyde in low-mass protostellar envelopes (gas-phase processes ? chemistry on the grain surfaces ?) and better constrain the chemical models. Methods : Using the IRAM 30m single-dish telescope, we observed deuterated formaldehyde (HDCO and D2CO) and methanol (CH2DOH, CH3OD, and CHD2OH) towards a sample of seven low-mass class 0 protostars. Using population diagrams, we then derive the fractionation ratios of these species (abundance ratio between the deuterated molecule and its main isotopologue) and compare them to the predictions of grain chemistry models. Results : These protostars show a similar level of deuteration as in IRAS16293-2422, where doubly-deuterated methanol -- and even triply-deuterated methanol -- were first detected. Our observations point to the formation of methanol on the grain surfaces, while formaldehyde formation cannot be fully pined down. While none of the scenarii can be excluded (gas-phase or grain chemistry formation), they both seem to require abstraction reactions to reproduce the observed fractionations.
Four Class I maser sources were detected at 44, 84, and 95 GHz toward chemically rich outflows in the regions of low-mass star formation NGC 1333I4A, NGC 1333I2A, HH25, and L1157. One more maser was found at 36 GHz toward a similar outflow, NGC 2023. Flux densities of the newly detected masers are no more than 18 Jy, being much lower than those of strong masers in regions of high-mass star formation. The brightness temperatures of the strongest peaks in NGC 1333I4A, HH25, and L1157 at 44 GHz are higher than 2000 K, whereas that of the peak in NGC 1333I2A is only 176 K. However, rotational diagram analysis showed that the latter source is also a maser. The main properties of the newly detected masers are similar to those of Class I methanol masers in regions of massive star formation. The former masers are likely to be an extension of the latter maser population toward low luminosities of both the masers and the corresponding YSOs.
(Abridged) Through spectrally unresolved observations of high-J CO transitions, Herschel-PACS has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components using spectrally resolved Herschel-HIFI data. Observations are presented of the highly excited CO line J=16-15 with Herschel-HIFI toward 24 low-mass protostellar objects. The spectrally resolved profiles show two distinct velocity components: a broad component with an average FWHM of 20 km/s, and a narrower component with a FWHM of 5 km/s that is often offset from the source velocity. The average rotational temperature over the entire profile, as measured from comparison between CO J=16-15 and 10-9 emission, is ~300 K. A radiative-transfer analysis shows that the average H2O/CO column-density ratio is ~0.02, suggesting a total H2O abundance of ~2x10^-6. Two distinct velocity profiles observed in the HIFI line profiles suggest that the CO ladder observed with PACS consists of two excitation components. The warm component (300 K) is associated with the broad HIFI component, and the hot component (700 K) is associated with the offset HIFI component. The former originates in either outflow cavity shocks or the disk wind, and the latter in irradiated shocks. The ubiquity of the warm and hot CO components suggests that fundamental mechanisms govern the excitation of these components; we hypothesize that the warm component arises when H2 stops being the dominant coolant. In this scenario, the hot component arises in cooling molecular H2-poor gas just prior to the onset of H2 formation. High spectral resolution observations of highly excited CO transitions uniquely shed light on the origin of warm and hot gas in low-mass protostellar objects.
The [HDO]/[H2O] ratio is a crucial parameter for probing the history of water formation. So far, it has been measured for only three solar type protostars and yielded different results, possibly pointing to a substantially different history in their formation. In the present work, we report new interferometric observations of the HDO 4 2,2 - 4 2,3 line for two solar type protostars, IRAS2A and IRAS4A, located in the NGC1333 region. In both sources, the detected HDO emission originates from a central compact unresolved region. Comparison with previously published interferometric observations of the H218$O 3 1,3 - 2 2,0 line shows that the HDO and H$_2$O lines mostly come from the same region. A non-LTE LVG analysis of the HDO and H218$O line emissions, combined with published observations, provides a [HDO]/[H2O] ratio of 0.3 - 8 % in IRAS2A and 0.5 - 3 % in IRAS4A. First, the water fractionation is lower than that of other molecules such as formaldehyde and methanol in the same sources. Second, it is similar to that measured in the solar type protostar prototype, IRAS16293-2422, and, surprisingly enough, larger than that measured in NGC1333 IRAS4B. {The comparison of the measured values towards IRAS2A and IRAS4A with the predictions of our gas-grain model GRAINOBLE gives similar conclusions to those for IRAS 16293, arguing that these protostars {share} a similar chemical history, although they are located in different clouds.
The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system. While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic Centre. We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. We use high sensitivity, high spatial and spectral resolution observations obtained with ALMA to study transitions of the less abundant, optically thin, methanol-isotopologues: (13)CH3OH, CH3(18)OH, CH2DOH and CH3OD, detected towards NGC 6334I. Assuming LTE and excitation temperatures of 120-330 K, we derive column densities for each of the species and use these to infer CH2DOH/CH3OH and CH3OD/CH3OH fractions. Interestingly, the column densities of CH3OD are consistently higher than those of CH2DOH throughout the region. All regions studied in this work show CH2DOH/CH3OH as well as CH2DOH/CH3OD ratios that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic Centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا