Do you want to publish a course? Click here

Low levels of methanol deuteration in the high-mass star-forming region NGC 6334I

68   0   0.0 ( 0 )
 Added by Eva B{\\o}gelund
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system. While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic Centre. We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. We use high sensitivity, high spatial and spectral resolution observations obtained with ALMA to study transitions of the less abundant, optically thin, methanol-isotopologues: (13)CH3OH, CH3(18)OH, CH2DOH and CH3OD, detected towards NGC 6334I. Assuming LTE and excitation temperatures of 120-330 K, we derive column densities for each of the species and use these to infer CH2DOH/CH3OH and CH3OD/CH3OH fractions. Interestingly, the column densities of CH3OD are consistently higher than those of CH2DOH throughout the region. All regions studied in this work show CH2DOH/CH3OH as well as CH2DOH/CH3OD ratios that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic Centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced.



rate research

Read More

We present observations of twelve rotational transitions of H2O-16, H2O-18, and H2O-17 toward the massive star-forming region NGC 6334 I, carried out with Herschel/HIFI as part of the guaranteed time key program Chemical HErschel Surveys of Star forming regions (CHESS). We analyze these observations to obtain insights into physical processes in this region. We identify three main gas components (hot core, cold foreground, and outflow) in NGC 6334 I and derive the physical conditions in these components. The hot core, identified by the emission in highly excited lines, shows a high excitation temperature of 200 K, whereas water in the foreground component is predominantly in the ortho- and para- ground states. The abundance of water varies between 4 10^-5 (outflow) and 10^-8 (cold foreground gas). This variation is most likely due to the freeze-out of water molecules onto dust grains. The H2O-18/H2O-17 abundance ratio is 3.2, which is consistent with the O-18/O-17 ratio determined from CO isotopologues. The ortho/para ratio in water appears to be relatively low 1.6(1) in the cold, quiescent gas, but close to the equilibrium value of three in the warmer outflow material (2.5(0.8)).
We aim at deriving the molecular abundances and temperatures of the hot molecular cores in the high-mass star-forming region NGC 6334I and consequently deriving their physical and astrochemical conditions. In the framework of the Herschel guaranteed time key program CHESS, NGC 6334I is investigated by using HIFI aboard the Herschel Space Observatory. A spectral line survey is carried out in the frequency range 480-1907 GHz, and auxiliary interferometric data from the SMA in the 230 GHz band provide spatial information for disentangling the different physical components contributing to the HIFI spectrum. The spectral lines are identified with the aid of former surveys and spectral line catalogs. The observed spectrum is then compared to a simulated synthetic spectrum with XCLASS, assuming local thermal equilibrium, and best fit parameters are derived using the model optimization package MAGIX. A total of 46 molecules are identified, with 31 isotopologues, resulting in about 4300 emission and absorption lines. High- energy levels of the dominant emitter methanol and vibrationally excited HCN are detected. The number of unidentified lines remains low with 75, or less than 2 percent of the lines detected. The modeling suggests that several spectral features need two or more components to be fitted properly. Other components could be assigned to cold foreground clouds or to outflows, most visible in the SiO emission. A chemical variation between the two embedded hot cores is found, with more N-bearing molecules identified in SMA1 and O-bearing molecules in SMA2. Spectral line surveys give powerful insights into the study of the interstellar medium. Different molecules trace different physical conditions like the inner hot core, the envelope, the outflows or the cold foreground clouds. The derived molecular abundances provide further constraints for astrochemical models.
We present Herschel/HIFI observations of 30 transitions of water isotopologues toward the high-mass star forming region NGC 6334 I. The line profiles of H_2^{16}O, H_2^{17}O, H_2^{18}O, and HDO show a complex pattern of emission and absorption components associated with the embedded hot cores, a lower-density envelope, two outflow components, and several foreground clouds, some associated with the NGC 6334 complex, others seen in projection against the strong continuum background of the source. Our analysis reveals an H2O ortho/para ratio of 3 +/- 0.5 in the foreground clouds, as well as the outflow. The water abundance varies from ~10^{-8} in the foreground clouds and the outer envelope to ~10^{-6} in the hot core. The hot core abundance is two orders of magnitude below the chemical model predictions for dense, warm gas, but within the range of values found in other Herschel/HIFI studies of hot cores and hot corinos. This may be related to the relatively low gas and dust temperature (~100 K), or time dependent effects, resulting in a significant fraction of water molecules still locked up in dust grain mantles. The HDO/H_2O ratio in NGC 6334 I, ~2 10^{-4}, is also relatively low, but within the range found in other high-mass star forming regions.
An unbiased spectral line survey toward a solar-type Class 0/I protostar, IRAS04368+2557, in L1527 has been carried out in the 3 mm band with the Nobeyama 45 m telescope. L1527 is known as a warm carbon-chain chemistry (WCCC) source, which harbors abundant unsaturated organic species such as C$_n$H ($n = 3, 4, 5,ldots$) in a warm and dense region near the protostar. The observation covers the frequency range from 80 to 116 GHz. A supplementary observation has also been conducted in the 70 GHz band to observe fundamental transitions of deuterated species. In total, 69 molecular species are identified, among which 27 species are carbon-chain species and their isomers, including their minor isotopologues. This spectral line survey provides us with a good template of the chemical composition of the WCCC source.
We present results of continuum and spectral line observations with ALMA and 22 GHz water (H$_2$O) maser observations using KaVA and VERA toward a high-mass star-forming region, G25.82-0.17. Multiple 1.3 mm continuum sources are revealed, indicating the presence of young stellar objects (YSOs) at different evolutionary stages, namely an ultra-compact HII region, G25.82-E, a high-mass young stellar object (HM-YSO), G25.82-W1, and starless cores, G25.82-W2 and G25.82-W3. Two SiO outflows, at N-S and SE-NW orientations, are identified. The CH$_3$OH 8$_{-1}$-7$_{0}$ E line, known to be a class I CH$_3$OH maser at 229 GHz is also detected showing a mixture of thermal and maser emission. Moreover, the H$_2$O masers are distributed in a region ~0.25 shifted from G25.82-W1. The CH$_3$OH 22$_{4}$-21$_{5}$ E line shows a compact ring-like structure at the position of G25.82-W1 with a velocity gradient, indicating a rotating disk or envelope. Assuming Keplerian rotation, the dynamical mass of G25.82-W1 is estimated to be $>$25 M$_{odot}$ and the total mass of 20 M$_odot$-84 M$_odot$ is derived from the 1.3 mm continuum emission. The driving source of the N-S SiO outflow is G25.82-W1 while that of the SE-NW SiO outflow is uncertain. Detection of multiple high-mass starless$/$protostellar cores and candidates without low-mass cores implies that HM-YSOs could form in individual high-mass cores as predicted by the turbulent core accretion model. If this is the case, the high-mass star formation process in G25.82 would be consistent with a scaled-up version of low-mass star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا