Do you want to publish a course? Click here

Low Level Radio-Frequency system used for testing the RFQ prototype of MYRRHA

57   0   0.0 ( 0 )
 Added by Christophe Joly
 Publication date 2019
  fields Physics
and research's language is English
 Authors C. Joly




Ask ChatGPT about the research

Within the framework of the European, project MYRTE (MYRRHA Research and Transmutation Endeavour) of the H2020 program, a 4-Rods RFQ (Radio Frequency Quadrupole) has been designed at 176.1 MHz RFQ for accelerating up to 4 mA protons in CW (Continuous Wave) operation from 30 keV up to 1.5 MeV. A LLRF prototype has been developed to regulate the amplitude and the phase of the accelerator field into the RFQ and the frequency of the RFQ controlling the motor of the frequency tuner. The facility at Louvain-La-Neuve will be presented with a focus on the LLRF system used and some preliminary results.



rate research

Read More

119 - W. Sarlin 2019
The first phase of the MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) project, MINERVA, was launched in September 2018. Through collaboration with the SCK-CEN, IN2P3 laboratories take in charge the developments of several parts of the accelerator, including a fully equipped Spoke cryomodule prototype and a cold valves box. This cryomodule will integrate two superconducting single spoke cavities operating at 2K, the RF power couplers and the cold tuning systems associated. For control and regulation purpose, a mTCA LLRF system prototype is being implemented and will be presented here alongside with the hardware, VHDL and EPICS developments that aim to fulfil MYRRHAs ambitious requirements.
72 - S. Li 2018
The J-PARC linac was consist of 324MHz low-{beta} section and 972MHz high-{beta} section. There is a total of 48 stations. And each station was equipped with an independent LLRF (Low-Level Radio Frequency) system to realize an accelerating field stability of $pm1$% in amplitude and $pm1${deg} in phase. For these llrf system, some of them, especially the 324MHz low-{beta} section, had already been used for more than 10 years. Due to lack of supply, it had become more and more difficult to do the system maintain. And in the near future, the beam current of j-parc linac was planned to increase to 60mA. At that time, the current system will face a huge pressure in solving the beam loading effect. Considering these, a new digital llrf system was developing at j-parc linac. In this paper, the architecture of the new system will be reported. The performance of system with a test cavity is summarized.
133 - Fang Wang , Liwen Feng , Lin Lin 2014
A low level radio frequency (LLRF) control system is designed and constructed at Peking University, which is for the DC-SRF photo injector operating at 2K. Besides with continuous wave (CW), the system is also reliable with pulsed RF and pulsed beam, the stability of amplitude and phase can achieve 0.13% and 0.1{deg}respectively. It is worth noting that the system works perfectly when the cavity is driven at both generator driven resonator (GDR) and self-excited loop (SEL), the latter is useful in measuring the performance of the cavity.
As part of the PIP-II Injector Experiment (PXIE) accelerator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H- ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequency of the RFQ.
67 - A. Belov , M. Bertaina , F. Capel 2017
The Mini-EUSO telescope is designed by the JEM-EUSO Collaboration to observe the UV emission of the Earth from the vantage point of the International Space Station (ISS) in low Earth orbit. The main goal of the mission is to map the Earth in the UV, thus increasing the technological readiness level of future EUSO experiments and to lay the groundwork for the detection of Extreme Energy Cosmic Rays (EECRs) from space. Due to its high time resolution of 2.5 us, Mini-EUSO is capable of detecting a wide range of UV phenomena in the Earths atmosphere. In order to maximise the scientific return of the mission, it is necessary to implement a multi-level trigger logic for data selection over different timescales. This logic is key to the success of the mission and thus must be thoroughly tested and carefully integrated into the data processing system prior to the launch. This article introduces the motivation behind the trigger design and details the integration and testing of the logic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا