Do you want to publish a course? Click here

High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID-array

241   0   0.0 ( 0 )
 Added by Denis Vion Dr
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed and measured a high-gain quantum-limited microwave parametric amplifier based on a superconducting lumped LC resonator with the inductor L including an array of 8 superconducting quantum interference devices (SQUIDs). This amplifier is parametrically pumped by modulating the flux threading the SQUIDs at twice the resonator frequency. Around 5 GHz, a maximum gain of 31 dB, a product amplitude-gain x bandwidth above 60 MHz, and a 1 dB compression point of -123 dBm at 20 dB gain are obtained in the non-degenerate mode of operation. Phase sensitive amplification-deamplification is also measured in the degenerate mode and yields a maximum gain of 37 dB. The compression point obtained is 18 dB above what would be obtained with a single SQUID of the same inductance, due to the smaller nonlinearity of the SQUID array.



rate research

Read More

We create a Josephson parametric amplifier from a transmission line resonator whose inner conductor is made from a series SQUID array. By changing the magnetic flux through the SQUID loops, we are able to adjust the circuits resonance frequency and, consenquently, the center of the amplified band, between 4 and 7.8 GHz. We observe that the amplifier has gains as large as 28 dB and infer that it adds less than twice the input vacuum noise.
We have developed a Josephson parametric amplifier, comprising a superconducting coplanar waveguide resonator terminated by a dc SQUID (superconducting quantum interference device). An external field (the pump, $sim 20$ GHz) modulates the flux threading the dc SQUID, and, thereby, the resonant frequency of the cavity field (the signal, $sim 10$ GHz), which leads to parametric signal amplification. We operated the amplifier at different band centers, and observed amplification (17 dB at maximum) and deamplification depending on the relative phase between the pump and the signal. The noise temperature is estimated to be less than 0.87 K.
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74% which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.
Josephson parametric amplifiers (JPA) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs, three of them exhibiting a hysteretic dependence of the resonant frequency versus the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices (dc-SQUID), which provide the JPA nonlinearity, for a finite screening parameter $beta_mathrm{L},{>},0$ and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.
We describe a circuit model for a flux-driven SQUID. This is useful for developing insight into how these devices perform as active elements in parametric amplifiers. The key concept is that frequency mixing in a flux-pumped SQUID allows for the appearance of an effective negative resistance. In the three-wave, degenerate case treated here, a negative resistance appears only over a certain range of allowed input signal phase. This model readily lends itself to testable predictions of more complicated circuits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا