Do you want to publish a course? Click here

TOI-503: The first known brown dwarf-Am star binary from the TESS mission

86   0   0.0 ( 0 )
 Added by Theron Carmichael
 Publication date 2019
  fields Physics
and research's language is English
 Authors Jan v{S}ubjak




Ask ChatGPT about the research

We report the discovery of an intermediate-mass transiting brown dwarf, TOI-503b, from the TESS mission. TOI-503b is the first brown dwarf discovered by TESS and orbits a metallic-line A-type star with a period of $P=3.6772 pm 0.0001$ days. The light curve from TESS indicates that TOI-503b transits its host star in a grazing manner, which limits the precision with which we measure the brown dwarfs radius ($R_b = 1.34^{+0.26}_{-0.15} R_J$). We obtained high-resolution spectroscopic observations with the FIES, Ondv{r}ejov, PARAS, Tautenburg, and TRES spectrographs and measured the mass of TOI-503b to be $M_b = 53.7 pm 1.2 M_J$. The host star has a mass of $M_star = 1.80 pm 0.06 M_odot$, a radius of $R_star = 1.70 pm 0.05 R_odot$, an effective temperature of $T_{rm eff} = 7650 pm 160$K, and a relatively high metallicity of $0.61pm 0.07$ dex. We used stellar isochrones to derive the age of the system to be $sim$180 Myr, which places its age between that of RIK 72b (a $sim$10 Myr old brown dwarf in the Upper Scorpius stellar association) and AD 3116b (a $sim$600 Myr old brown dwarf in the Praesepe cluster). We argue that this brown dwarf formed in-situ, based on the young age of the system and the long circularization timescale for this brown dwarf around its host star. TOI-503b joins a growing number of known short-period, intermediate-mass brown dwarfs orbiting main sequence stars, and is the second such brown dwarf known to transit an A star, after HATS-70b. With the growth in the population in this regime, the driest region in the brown dwarf desert ($35-55 M_J sin{i}$) is reforesting and its mass range shrinking.

rate research

Read More

We report the discovery of two transiting brown dwarfs (BDs), TOI-811b and TOI-852b, from NASAs Transiting Exoplanet Survey Satellite mission. These two transiting BDs have similar masses, but very different radii and ages. Their host stars have similar masses, effective temperatures, and metallicities. The younger and larger transiting BD is TOI-811b at a mass of $M_b = 55.3 pm 3.2{rm M_J}$ and radius of $R_b = 1.35 pm 0.09{rm R_J}$ and it orbits its host star in a period of $P = 25.16551 pm 0.00004$ days. Its age of $93^{+61}_{-29}$ Myr, which we derive from an application of gyrochronology to its host star, is why this BDs radius is relatively large, not heating from its host star since this BD orbits at a longer orbital period than most known transiting BDs. This constraint on the youth of TOI-811b allows us to test substellar mass-radius isochrones where the radius of BDs changes rapidly with age. TOI-852b is a much older (4.0 Gyr from stellar isochrone models of the host star) and smaller transiting BD at a mass of $M_b = 53.7 pm 1.3{rm M_J}$, a radius of $R_b = 0.75 pm 0.03{rm R_J}$, and an orbital period of $P = 4.94561 pm 0.00008$ days. TOI-852b joins the likes of other old transiting BDs that trace out the oldest substellar mass-radius isochrones where contraction of the BDs radius asymptotically slows. Both host stars have a mass of $M_star = 1.32{rm M_odot}pm0.05$ and differ in their radii, $T_{rm eff}$, and [Fe/H] with TOI-811 having $R_star=1.27pm0.09{rm R_odot}$, $T_{rm eff} = 6107 pm 77$K, and $rm [Fe/H] = +0.40 pm 0.09$ and TOI-852 having $R_star=1.71pm0.04{rm R_odot}$, $T_{rm eff} = 5768 pm 84$K, and $rm [Fe/H] = +0.33 pm 0.09$. We take this opportunity to examine how TOI-811b and TOI-852b serve as test points for young and old substellar isochrones, respectively.
We report the discovery of two intermediate-mass brown dwarfs (BDs), TOI-569b and TOI-1406b, from NASAs Transiting Exoplanet Survey Satellite mission. TOI-569b has an orbital period of $P = 6.55604 pm 0.00016$ days, a mass of $M_b = 64.1 pm 1.9 M_J$, and a radius of $R_b = 0.75 pm 0.02 R_J$. Its host star, TOI-569, has a mass of $M_star = 1.21 pm 0.03 M_odot$, a radius of $R_star = 1.47 pm 0.03 R_odot$, $rm [Fe/H] = +0.29 pm 0.09$ dex, and an effective temperature of $T_{rm eff} = 5768 pm 110K$. TOI-1406b has an orbital period of $P = 10.57415 pm 0.00063$ days, a mass of $M_b =46.0 pm 2.7 M_J$, and a radius of $R_b = 0.86 pm 0.03 R_J$. The host star for this BD has a mass of $M_star =1 .18 pm 0.09 M_odot$, a radius of $R_star = 1.35 pm 0.03 R_odot$, $ rm [Fe/H] = -0.08 pm 0.09$ dex and an effective temperature of $T_{rm eff} = 6290 pm 100K$. Both BDs are in circular orbits around their host stars and are older than 3 Gyr based on stellar isochrone models of the stars. TOI-569 is one of two slightly evolved stars known to host a transiting BD (the other being KOI-415). TOI-1406b is one of three known transiting BDs to occupy the mass range of $40-50 M_J$ and one of two to have a circular orbit at a period near 10 days (with the first being KOI-205b).Both BDs have reliable ages from stellar isochrones in addition to their well-constrained masses and radii, making them particularly valuable as tests for substellar isochrones in the BD mass-radius diagram.
The Transiting Exoplanet Survey Satellite (TESS) is an all-sky survey mission aiming to search for exoplanets that transit bright stars. The high-quality photometric data of TESS are excellent for the asteroseismic study of solar-like stars. In this work, we present an asteroseismic analysis of the red-giant star HD~222076 hosting a long-period (2.4 yr) giant planet discovered through radial velocities. Solar-like oscillations of HD~222076 are detected around $203 , mu$Hz by TESS for the first time. Asteroseismic modeling, using global asteroseismic parameters as input, yields a determination of the stellar mass ($M_star = 1.12 pm 0.12, M_odot$), radius ($R_star = 4.34 pm 0.21,R_odot$), and age ($7.4 pm 2.7,$Gyr), with precisions greatly improved from previous studies. The period spacing of the dipolar mixed modes extracted from the observed power spectrum reveals that the star is on the red-giant branch burning hydrogen in a shell surrounding the core. We find that the planet will not escape the tidal pull of the star and be engulfed into it within about $800,$Myr, before the tip of the red-giant branch is reached.
The Transiting Exoplanet Survey Satellite (TESS) is observing bright known planet-host stars across almost the entire sky. These stars have been subject to extensive ground-based observations, providing a large number of radial velocity (RV) measurements. In this work we use the new TESS photometric observations to characterize the star $lambda^2$ Fornacis, and following this to update the parameters of the orbiting planet $lambda^2$ For b. We measure the p-mode oscillation frequencies in $lambda^2$ For, and in combination with non-seismic parameters estimate the stellar fundamental properties using stellar models. Using the revised stellar properties and a time series of archival RV data from the UCLES, HIRES and HARPS instruments spanning almost 20 years, we refit the orbit of $lambda^2$ For b and search the RV residuals for remaining variability. We find that $lambda^2$ For has a mass of $1.16pm0.03$M$_odot$ and a radius of $1.63pm0.04$R$_odot$, with an age of $6.3pm0.9$Gyr. This and the updated RV measurements suggest a mass of $lambda^2$ For b of $16.8^{+1.2}_{-1.3}$M$_oplus$, which is $sim5$M$_oplus$ less than literature estimates. We also detect a periodicity at 33 days in the RV measurements, which is likely due to the rotation of the host star. While previous literature estimates of the properties of $lambda^2$ are ambiguous, the asteroseismic measurements place the star firmly at the early stage of its subgiant evolutionary phase. Typically only short time series of photometric data are available from TESS, but by using asteroseismology it is still possible to provide tight constraints on the properties of bright stars that until now have only been observed from the ground. This prompts a reexamination of archival RV data from the past few decades to update the characteristics of the planet hosting systems observed by TESS for which asteroseismology is possible.
278 - Y. K. Jung , A. Udalski , T. Sumi 2014
We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{rm max}sim 1.5$. It is found that the event was produced by a binary lens with a mass ratio between the components of $q = 0.13$ and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are $M_{1} = 0.096 pm 0.013~M_{odot}$ and $M_{2} = 0.012 pm 0.002~M_{odot}$, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is $3.04 pm 0.31~{rm kpc}$ and the projected separation between the lens components is $0.80 pm 0.08~{rm AU}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا