No Arabic abstract
A number of applications in basic science and technology would benefit from high fidelity photon number resolving photodetectors. While some recent experimental progress has been made in this direction, the requirements for true photon number resolution are stringent, and no design currently exists that achieves this goal. Here we employ techniques from fundamental quantum optics to demonstrate that detectors composed of subwavelength elements interacting collectively with the photon field can achieve high-performance photon number resolution. We propose a new design that simultaneously achieves photon number resolution, high efficiency, low jitter, low dark counts, and high count rate. We discuss specific systems that satisfy the design requirements, pointing to the important role of nanoscale device elements.
The Parallel Nanowire Detector (PND) is a photon number resolving (PNR) detector which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. PNDs were fabricated on 3-4 nm thick NbN films grown on MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. PNDs showed a counting rate of 80 MHz and a pulse duration as low as 660ps full width at half maximum (FWHM). Building the histograms of the photoresponse peak, no multiplication noise buildup is observable. Electrical and optical equivalent models of the device were developed in order to study its working principle, define design guidelines, and develop an algorithm to estimate the photon number statistics of an unknown light. In particular, the modeling provides novel insight of the physical limit to the detection efficiency and to the reset time of these detectors. The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.
We present an alternative approach to the fabrication of highly efficient superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide. Using well-established technologies for the deposition of dielectric mirrors and anti-reflection coatings in conjunction with an embedded WSi bilayer photon absorber structure, we fabricated a bandwidth-enhanced detector. It exhibits system detection efficiencies (SDE) higher than $left(87.1pm1.3right),%$ in the range from $1450,mathrm{nm}$ to $1640,mathrm{nm}$, with a maximum of $left(92.9pm1.1right),%$ at $1515,mathrm{nm}$. Our measurements indicate SDE enhancements of up to $left(18.4pm1.7right),%$ over a single-absorber WSi SNSPD. The latter has been optimized for 1550 nm for comparison and exhibits maximum SDE of $left(93.5pm1.2right),%$ at 1555 nm. We emphasize that our technological approach has been tested with, but is not limited to, the wavelengths and absorber material presented here. It could be adapted flexibly for multi-color detector systems from the ultraviolet to the mid-infrared wavelength range. This bears the potential for significant improvements in many current quantum optical experiments and applications as well as for detector commercialization.
We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1.8x10$^{-13}$/$sqrt{tau}$ for times less than 100 s and a flicker noise floor of 1x10$^{-14}$ out to 6000 s. At long integration times, the instability is limited by variations in optical probe power and the AC Stark shift. The retrace was measured to 5.7x10$^{-13}$ after 30 hours of dormancy. Such a simple, yet high-performance optical standard could be suitable as an accurate realization of the SI meter or, if coupled with an optical frequency comb, as a compact atomic clock comparable to a hydrogen maser.
The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40% efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79% +/- 2% detection efficiency with a single pass, and 88% +/- 3% at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit - a capability that offers great potential for many quantum optical applications.
We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements. It is based on a monochromator composed of two gratings, collimation optics and an array of single photon avalanche diodes. The time resolution can reach $110$ ps and the spectral resolution is $2$ nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators, and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.