Do you want to publish a course? Click here

Learning to Manipulate Object Collections Using Grounded State Representations

52   0   0.0 ( 0 )
 Added by Matthew Wilson
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose a method for sim-to-real robot learning which exploits simulator state information in a way that scales to many objects. We first train a pair of encoder networks to capture multi-object state information in a latent space. One of these encoders is a CNN, which enables our system to operate on RGB images in the real world; the other is a graph neural network (GNN) state encoder, which directly consumes a set of raw object poses and enables more accurate reward calculation and value estimation. Once trained, we use these encoders in a reinforcement learning algorithm to train image-based policies that can manipulate many objects. We evaluate our method on the task of pushing a collection of objects to desired tabletop regions. Compared to methods which rely only on images or use fixed-length state encodings, our method achieves higher success rates, performs well in the real world without fine tuning, and generalizes to different numbers and types of objects not seen during training.



rate research

Read More

There is a large variety of objects and appliances in human environments, such as stoves, coffee dispensers, juice extractors, and so on. It is challenging for a roboticist to program a robot for each of these object types and for each of their instantiations. In this work, we present a novel approach to manipulation planning based on the idea that many household objects share similarly-operated object parts. We formulate the manipulation planning as a structured prediction problem and learn to transfer manipulation strategy across different objects by embedding point-cloud, natural language, and manipulation trajectory data into a shared embedding space using a deep neural network. In order to learn semantically meaningful spaces throughout our network, we introduce a method for pre-training its lower layers for multimodal feature embedding and a method for fine-tuning this embedding space using a loss-based margin. In order to collect a large number of manipulation demonstrations for different objects, we develop a new crowd-sourcing platform called Robobarista. We test our model on our dataset consisting of 116 objects and appliances with 249 parts along with 250 language instructions, for which there are 1225 crowd-sourced manipulation demonstrations. We further show that our robot with our model can even prepare a cup of a latte with appliances it has never seen before.
Well structured visual representations can make robot learning faster and can improve generalization. In this paper, we study how we can acquire effective object-centric representations for robotic manipulation tasks without human labeling by using autonomous robot interaction with the environment. Such representation learning methods can benefit from continuous refinement of the representation as the robot collects more experience, allowing them to scale effectively without human intervention. Our representation learning approach is based on object persistence: when a robot removes an object from a scene, the representation of that scene should change according to the features of the object that was removed. We formulate an arithmetic relationship between feature vectors from this observation, and use it to learn a representation of scenes and objects that can then be used to identify object instances, localize them in the scene, and perform goal-directed grasping tasks where the robot must retrieve commanded objects from a bin. The same grasping procedure can also be used to automatically collect training data for our method, by recording images of scenes, grasping and removing an object, and recording the outcome. Our experiments demonstrate that this self-supervised approach for tasked grasping substantially outperforms direct reinforcement learning from images and prior representation learning methods.
We propose HyperDynamics, a dynamics meta-learning framework that conditions on an agents interactions with the environment and optionally its visual observations, and generates the parameters of neural dynamics models based on inferred properties of the dynamical system. Physical and visual properties of the environment that are not part of the low-dimensional state yet affect its temporal dynamics are inferred from the interaction history and visual observations, and are implicitly captured in the generated parameters. We test HyperDynamics on a set of object pushing and locomotion tasks. It outperforms existing dynamics models in the literature that adapt to environment variations by learning dynamics over high dimensional visual observations, capturing the interactions of the agent in recurrent state representations, or using gradient-based meta-optimization. We also show our method matches the performance of an ensemble of separately trained experts, while also being able to generalize well to unseen environment variations at test time. We attribute its good performance to the multiplicative interactions between the inferred system properties -- captured in the generated parameters -- and the low-dimensional state representation of the dynamical system.
Humans are adept at learning new tasks by watching a few instructional videos. On the other hand, robots that learn new actions either require a lot of effort through trial and error, or use expert demonstrations that are challenging to obtain. In this paper, we explore a method that facilitates learning object manipulation skills directly from videos. Leveraging recent advances in 2D visual recognition and differentiable rendering, we develop an optimization based method to estimate a coarse 3D state representation for the hand and the manipulated object(s) without requiring any supervision. We use these trajectories as dense rewards for an agent that learns to mimic them through reinforcement learning. We evaluate our method on simple single- and two-object actions from the Something-Something dataset. Our approach allows an agent to learn actions from single videos, while watching multiple demonstrations makes the policy more robust. We show that policies learned in a simulated environment can be easily transferred to a real robot.
Sequential manipulation tasks require a robot to perceive the state of an environment and plan a sequence of actions leading to a desired goal state, where the ability to reason about spatial relationships among object entities from raw sensor inputs is crucial. Prior works relying on explicit state estimation or end-to-end learning struggle with novel objects. In this work, we propose SORNet (Spatial Object-Centric Representation Network), which extracts object-centric representations from RGB images conditioned on canonical views of the objects of interest. We show that the object embeddings learned by SORNet generalize zero-shot to unseen object entities on three spatial reasoning tasks: spatial relationship classification, skill precondition classification and relative direction regression, significantly outperforming baselines. Further, we present real-world robotic experiments demonstrating the usage of the learned object embeddings in task planning for sequential manipulation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا