No Arabic abstract
Let $text{G}(n)$ be equal either to $text{PO}(n,1),text{PU}(n,1)$ or $text{PSp}(n,1)$ and let $Gamma leq text{G}(n)$ be a uniform lattice. Denote by $mathbb{H}^n_K$ the hyperbolic space associated to $text{G}(n)$, where $K$ is a division algebra over the reals of dimension $d=dim_{mathbb{R}} K$. Assume $d(n-1) geq 2$. In this paper we generalize natural maps to measurable cocycles. Given a standard Borel probability $Gamma$-space $(X,mu_X)$, we assume that a measurable cocycle $sigma:Gamma times X rightarrow text{G}(m)$ admits an essentially unique boundary map $phi:partial_infty mathbb{H}^n_K times X rightarrow partial_infty mathbb{H}^m_K$ whose slices $phi_x:mathbb{H}^n_K rightarrow mathbb{H}^m_K$ are atomless for almost every $x in X$. Then, there exists a $sigma$-equivariant measurable map $F: mathbb{H}^n_K times X rightarrow mathbb{H}^m_K$ whose slices $F_x:mathbb{H}^n_K rightarrow mathbb{H}^m_K$ are differentiable for almost every $x in X$ and such that $text{Jac}_a F_x leq 1$ for every $a in mathbb{H}^n_K$ and almost every $x in X$. The previous properties allow us to define the natural volume $text{NV}(sigma)$ of the cocycle $sigma$. This number satisfies the inequality $text{NV}(sigma) leq text{Vol}(Gamma backslash mathbb{H}^n_K)$. Additionally, the equality holds if and only if $sigma$ is cohomologous to the cocycle induced by the standard lattice embedding $i:Gamma rightarrow text{G}(n) leq text{G}(m)$, modulo possibly a compact subgroup of $text{G}(m)$ when $m>n$. Given a continuous map $f:M rightarrow N$ between compact hyperbolic manifolds, we also obtain an adaptation of the mapping degree theorem to this context.
Let $Gamma$ be a torsion-free lattice of $text{PU}(p,1)$ with $p geq 2$ and let $(X,mu_X)$ be an ergodic standard Borel probability $Gamma$-space. We prove that any maximal Zariski dense measurable cocycle $sigma: Gamma times X longrightarrow text{SU}(m,n)$ is cohomologous to a cocycle associated to a representation of $text{PU}(p,1)$ into $text{SU}(m,n)$, with $1 < m leq n$. The proof follows the line of Zimmer Superrigidity Theorem and requires the existence of a boundary map, that we prove in a much more general setting. As a consequence of our result, it cannot exist a maximal measurable cocycle with the above properties when $n eq m$.
Given $Gamma < text{PU}(n,1)$ a torsion-free lattice and $(X,mu_X)$ a standard Borel $Gamma$-space, we introduce the notion of Toledo invariant of a measurable cocycle $sigma:Gamma times X rightarrow text{PU}(p,infty)$. Since that invariant has bounded absolute value, it makes sense to speak about maximality. We prove that any maximal measurable cocycle is finitely reducible, that is it admits a cohomologous cocycle with image contained in a copy of $text{PU}(p,np)$ inside $text{PU}(p,infty)$, which is a finite algebraic subgroup. Even if we do not provide a real rigidity result in this setting, our statement can be seen as the natural adaption of the results for representations due to Duchesne, Lecureux and Pozzetti. We conclude the paper by completing the analysis of maximal cocycles of complex hyperbolic lattices started in cite{sarti:savini} with a characterization of their algebraic hull.
Let $G$ a semisimple Lie group of non-compact type and let $mathcal{X}_G$ be the Riemannian symmetric space associated to it. Suppose $mathcal{X}_G$ has dimension $n$ and it has no factor isometric to either $mathbb{H}^2$ or $text{SL}(3,mathbb{R})/text{SO}(3)$. Given a closed $n$-dimensional Riemannian manifold $N$, let $Gamma=pi_1(N)$ be its fundamental group and $Y$ its universal cover. Consider a representation $rho:Gamma rightarrow G$ with a measurable $rho$-equivariant map $psi:Y rightarrow mathcal{X}_G$. Connell-Farb described a way to construct a map $F:Yrightarrow mathcal{X}_G$ which is smooth, $rho$-equivariant and with uniformly bounded Jacobian. In this paper we extend the construction of Connell-Farb to the context of measurable cocycles. More precisely, if $(Omega,mu_Omega)$ is a standard Borel probability $Gamma$-space, let $sigma:Gamma times Omega rightarrow G$ be a measurable cocycle. We construct a measurable map $F: Y times Omega rightarrow mathcal{X}_G$ which is $sigma$-equivariant, whose slices are smooth and they have uniformly bounded Jacobian. For such equivariant maps we define also the notion of volume and we prove a sort of mapping degree theorem in this particular context.
We prove that any arithmetic hyperbolic $n$-manifold of simplest type can either be geodesically embedded into an arithmetic hyperbolic $(n+1)$-manifold or its universal $mathrm{mod}~2$ Abelian cover can.
We prove that the deformation space AH(M) of marked hyperbolic 3-manifolds homotopy equivalent to a fixed compact 3-manifold M with incompressible boundary is locally connected at minimally parabolic points. Moreover, spaces of Kleinian surface groups are locally connected at quasiconformally rigid points. Similar results are obtained for deformation spaces of acylindrical 3-manifolds and Bers slices.