Do you want to publish a course? Click here

ShamFinder: An Automated Framework for Detecting IDN Homographs

54   0   0.0 ( 0 )
 Added by Tatsuya Mori Dr.
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The internationalized domain name (IDN) is a mechanism that enables us to use Unicode characters in domain names. The set of Unicode characters contains several pairs of characters that are visually identical with each other; e.g., the Latin character a (U+0061) and Cyrillic character a (U+0430). Visually identical characters such as these are generally known as homoglyphs. IDN homograph attacks, which are widely known, abuse Unicode homoglyphs to create lookalike URLs. Although the threat posed by IDN homograph attacks is not new, the recent rise of IDN adoption in both domain name registries and web browsers has resulted in the threat of these attacks becoming increasingly widespread, leading to large-scale phishing attacks such as those targeting cryptocurrency exchange companies. In this work, we developed a framework named ShamFinder, which is an automated scheme to detect IDN homographs. Our key contribution is the automatic construction of a homoglyph database, which can be used for direct countermeasures against the attack and to inform users about the context of an IDN homograph. Using the ShamFinder framework, we perform a large-scale measurement study that aims to understand the IDN homographs that exist in the wild. On the basis of our approach, we provide insights into an effective counter-measure against the threats caused by the IDN homograph attack.



rate research

Read More

`Anytime, Anywhere data access model has become a widespread IT policy in organizations making insider attacks even more complicated to model, predict and deter. Here, we propose Gargoyle, a network-based insider attack resilient framework against the most complex insider threats within a pervasive computing context. Compared to existing solutions, Gargoyle evaluates the trustworthiness of an access request context through a new set of contextual attributes called Network Context Attribute (NCA). NCAs are extracted from the network traffic and include information such as the users device capabilities, security-level, current and prior interactions with other devices, network connection status, and suspicious online activities. Retrieving such information from the users device and its integrated sensors are challenging in terms of device performance overheads, sensor costs, availability, reliability and trustworthiness. To address these issues, Gargoyle leverages the capabilities of Software-Defined Network (SDN) for both policy enforcement and implementation. In fact, Gargoyles SDN App can interact with the network controller to create a `defence-in-depth protection system. For instance, Gargoyle can automatically quarantine a suspicious data requestor in the enterprise network for further investigation or filter out an access request before engaging a data provider. Finally, instead of employing simplistic binary rules in access authorizations, Gargoyle incorporates Function-based Access Control (FBAC) and supports the customization of access policies into a set of functions (e.g., disabling copy, allowing print) depending on the perceived trustworthiness of the context.
76 - Ahmed E. Youssef 2020
Security is considered one of the top ranked risks of Cloud Computing (CC) due to the outsourcing of sensitive data onto a third party. In addition, the complexity of the cloud model results in a large number of heterogeneous security controls that must be consistently managed. Hence, no matter how strongly the cloud model is secured, organizations continue suffering from lack of trust on CC and remain uncertain about its security risk consequences. Traditional risk management frameworks do not consider the impact of CC security risks on the business objectives of the organizations. In this paper, we propose a novel Cloud Security Risk Management Framework (CSRMF) that helps organizations adopting CC identify, analyze, evaluate, and mitigate security risks in their Cloud platforms. Unlike traditional risk management frameworks, CSRMF is driven by the business objectives of the organizations. It allows any organization adopting CC to be aware of cloud security risks and align their low-level management decisions according to high-level business objectives. In essence, it is designed to address impacts of cloud-specific security risks into business objectives in a given organization. Consequently, organizations are able to conduct a cost-value analysis regarding the adoption of CC technology and gain an adequate level of confidence in Cloud technology. On the other hand, Cloud Service Providers (CSP) are able to improve productivity and profitability by managing cloud-related risks. The proposed framework has been validated and evaluated through a use-case scenario.
COVID-19 causes a global epidemic infection, which is the most severe infection disaster in human history. In the absence of particular medication and vaccines, tracing and isolating the source of infection is the best option to slow the spread of the virus and reduce infection and death rates among the population. There are three main obstacles in the process of tracing the infection: 1) Patients electronic health record is stored in a traditional centralized database that could be stolen and tampered with the infection data, 2) The confidential personal identity of the infected user may be revealed to a third party or organization, 3) Existing infection tracing systems do not trace infections from multiple dimensions. Either the system is location-based or individual-based tracing. In this work, we propose a global COVID-19 information sharing system that utilizes the Blockchain, Smart Contract, and Bluetooth technologies. The proposed system unifies location-based and Bluetooth-based contact tracing services into the Blockchain platform, where the automatically executed smart contracts are deployed so that users can get consistent and non-tamperable virus trails. The anonymous functionality provided by the Blockchain and Bluetooth technology protects the users identity privacy. With our proposed analysis formula for estimating the probability of infection, users can take measures to protect themselves in advance. We also implement a prototype system to demonstrate the feasibility and effectiveness of our approach.
As Deep Packet Inspection (DPI) middleboxes become increasingly popular, a spectrum of adversarial attacks have emerged with the goal of evading such middleboxes. Many of these attacks exploit discrepancies between the middlebox network protocol implementations, and the more rigorous/comple
The dramatic growth in smartphone malware shows that malicious program developers are shifting from traditional PC systems to smartphone devices. Therefore, security researchers are also moving towards proposing novel antimalware methods to provide adequate protection. This paper proposes a Blockchain-Based Malware Detection Framework (B2MDF) for detecting malicious mobile applications in mobile applications marketplaces (app stores). The framework consists of two internal and external private blockchains forming a dual private blockchain as well as a consortium blockchain for the final decision. The internal private blockchain stores feature blocks extracted by both static and dynamic feature extractors, while the external blockchain stores detection results as blocks for curre
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا