Do you want to publish a course? Click here

You Do (Not) Belong Here: Detecting DPI Evasion Attacks with Context Learning

44   0   0.0 ( 0 )
 Added by Shitong Zhu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

As Deep Packet Inspection (DPI) middleboxes become increasingly popular, a spectrum of adversarial attacks have emerged with the goal of evading such middleboxes. Many of these attacks exploit discrepancies between the middlebox network protocol implementations, and the more rigorous/comple



rate research

Read More

Fault injections are increasingly used to attack/test secure applications. In this paper, we define formal models of runtime monitors that can detect fault injections that result in test inversion attacks and arbitrary jumps in the control flow. Runtime verification monitors offer several advantages. The code implementing a monitor is small compared to the entire application code. Monitors have a formal semantics; and we prove that they effectively detect attacks. Each monitor is a module dedicated to detecting an attack and can be deployed as needed to secure the application. A monitor can run separately from the application or it can be ``weaved inside the application. Our monitors have been validated by detecting simulated attacks on a program that verifies a user PIN.
96 - Deqiang Li , Qianmu Li 2020
Malware remains a big threat to cyber security, calling for machine learning based malware detection. While promising, such detectors are known to be vulnerable to evasion attacks. Ensemble learning typically facilitates countermeasures, while attackers can leverage this technique to improve attack effectiveness as well. This motivates us to investigate which kind of robustness the ensemble defense or effectiveness the ensemble attack can achieve, particularly when they combat with each other. We thus propose a new attack approach, named mixture of attacks, by rendering attackers capable of multiple generative methods and multiple manipulation sets, to perturb a malware example without ruining its malicious functionality. This naturally leads to a new instantiation of adversarial training, which is further geared to enhancing the ensemble of deep neural networks. We evaluate defenses using Android malware detectors against 26 different attacks upon two practical datasets. Experimental results show that the new adversarial training significantly enhances the robustness of deep neural networks against a wide range of attacks, ensemble methods promote the robustness when base classifiers are robust enough, and yet ensemble attacks can evade the enhanced malware detectors effectively, even notably downgrading the VirusTotal service.
89 - Yanzi Zhu , Ying Ju , Bolun Wang 2018
Millimeter-wave wireless networks offer high throughput and can (ideally) prevent eavesdropping attacks using narrow, directional beams. Unfortunately, imperfections in physical hardware mean todays antenna arrays all exhibit side lobes, signals that carry the same sensitive data as the main lobe. Our work presents results of the first experimental study of the security properties of mmWave transmissions against side-lobe eavesdropping attacks. We show that these attacks on mmWave links are highly effective in both indoor and outdoor settings, and they cannot be eliminated by improved hardware or currently proposed defenses.
136 - Yusi Lei , Sen Chen , Lingling Fan 2020
Machine learning (ML) based approaches have been the mainstream solution for anti-phishing detection. When they are deployed on the client-side, ML-based classifiers are vulnerable to evasion attacks. However, such potential threats have received relatively little attention because existing attacks destruct the functionalities or appearance of webpages and are conducted in the white-box scenario, making it less practical. Consequently, it becomes imperative to understand whether it is possible to launch evasion attacks with limited knowledge of the classifier, while preserving the functionalities and appearance. In this work, we show that even in the grey-, and black-box scenarios, evasion attacks are not only effective on practical ML-based classifiers, but can also be efficiently launched without destructing the functionalities and appearance. For this purpose, we propose three mutation-based attacks, differing in the knowledge of the target classifier, addressing a key technical challenge: automatically crafting an adversarial sample from a known phishing website in a way that can mislead classifiers. To launch attacks in the white- and grey-box scenarios, we also propose a sample-based collision attack to gain the knowledge of the target classifier. We demonstrate the effectiveness and efficiency of our evasion attacks on the state-of-the-art, Googles phishing page filter, achieved 100% attack success rate in less than one second per website. Moreover, the transferability attack on BitDefenders industrial phishing page classifier, TrafficLight, achieved up to 81.25% attack success rate. We further propose a similarity-based method to mitigate such evasion attacks, Pelican. We demonstrate that Pelican can effectively detect evasion attacks. Our findings contribute to design more robust phishing website classifiers in practice.
A novel class of extreme link-flooding DDoS (Distributed Denial of Service) attacks is designed to cut off entire geographical areas such as cities and even countries from the Internet by simultaneously targeting a selected set of network links. The Crossfire attack is a target-area link-flooding attack, which is orchestrated in three complex phases. The attack uses a massively distributed large-scale botnet to generate low-rate benign traffic aiming to congest selected network links, so-called target links. The adoption of benign traffic, while simultaneously targeting multiple network links, makes detecting the Crossfire attack a serious challenge. In this paper, we present analytical and emulated results showing hitherto unidentified vulnerabilities in the execution of the attack, such as a correlation between coordination of the botnet traffic and the quality of the attack, and a correlation between the attack distribution and detectability of the attack. Additionally, we identified a warm-up period due to the bot synchronization. For attack detection, we report results of using two supervised machine learning approaches: Support Vector Machine (SVM) and Random Forest (RF) for classification of network traffic to normal and abnormal traffic, i.e, attack traffic. These machine learning models have been trained in various scenarios using the link volume as the main feature set.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا