No Arabic abstract
We performed a series of high-resolution $N$-body simulations to examine whether dark matter candidates in the form of primordial black holes (PBHs) can solve the cusp-core problem in low-mass dwarf galaxies. If some fraction of the dark matter in low-mass dwarf galaxies consists of PBHs and the rest is cold dark matter, dynamical heating of the cold dark matter by the PBHs induces a cusp-to-core transition in the total dark matter profile. The mechanism works for PBHs in the 25-100 M$_{sun}$ mass window, consistent with the LIGO detections, but requires a lower limit on the PBH mass fraction of 1$%$ of the total dwarf galaxy dark matter content. The cusp-to-core transition time-scale is between 1 and 8 Gyr. This time-scale is also a constant multiple of the relaxation time between cold dark matter particles and PBHs, which depends on the mass, the mass fraction and the scale radius of the initial density profile of PBHs. We conclude that dark matter cores occur naturally in halos comprised of cold dark matter and PBHs, without the need to invoke baryonic processes.
Black holes formed in the early universe, prior to the formation of stars, can exist as dark matter and also contribute to the black hole merger events observed in gravitational waves. We set a new limit on the abundance of primordial black holes (PBHs) by considering interactions of PBHs with the interstellar medium, which result in the heating of gas. We examine generic heating mechanisms, including emission from the accretion disk, dynamical friction, and disk outflows. Using the data from the Leo T dwarf galaxy, we set a new cosmology-independent limit on the abundance of PBHs in the mass range $mathcal{O}(1) M_{odot}-10^7 M_{odot}$, relevant for the recently detected gravitational wave signals from intermediate-mass BHs.
Interstellar gas heating is a powerful cosmology-independent observable for exploring the parameter space of primordial black holes (PBHs) formed in the early Universe that could constitute part of the dark matter (DM). We provide a detailed analysis of the various aspects for this observable, such as PBH emission mechanisms. Using observational data from the Leo T dwarf galaxy, we constrain the PBH abundance over a broad mass-range, $M_{rm PBH} sim mathcal{O}(1) M_{odot}-10^7 M_{odot}$, relevant for the recently detected gravitational wave signals from intermediate-mass BHs. We also consider PBH gas heating of systems with bulk relative velocity with respect to the DM, such as Galactic clouds.
Recent observations have been discovering new ultra-faint dwarf galaxies as small as $sim20~{rm pc}$ in half-light radius and $sim3~{rm km~s^{-1}}$ in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, i.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formulae and $N$-body simulations to study how dynamical friction changes a stellar density profile and how different it is between cuspy and cored dark matter haloes. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability which results in emergence of a stellar cusp in the central region $simeq2~{rm pc}$. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark-matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultra-faint dwarf galaxies.
The NANOGrav Collaboration has recently published a strong evidence for a stochastic common-spectrum process that may be interpreted as a stochastic gravitational wave background. We show that such a signal can be explained by second-order gravitational waves produced during the formation of primordial black holes from the collapse of sizeable scalar perturbations generated during inflation. This possibility has two predictions: $i$) the primordial black holes may comprise the totality of the dark matter with the dominant contribution to their mass function falling in the range $(10^{-15}div 10^{-11}) M_odot$ and $ii$) the gravitational wave stochastic background will be seen as well by the LISA experiment.
We investigate a possibility of primordial black hole (PBH) formation with a hierarchical mass spectrum in multiple phases of inflation. As an example, we find that one can simultaneously realize a mass spectrum which has recently attracted a lot of attention: stellar-mass PBHs ($simmathcal{O}(10)M_odot$) as a possible source of binary black holes detected by LIGO/Virgo collaboration, asteroid-mass ($simmathcal{O}(10^{-12})M_odot$) as a main component of dark matter, and earth-mass ($simmathcal{O}(10^{-5})M_odot$) as a source of ultrashort-timescale events in Optical Gravitational Lensing Experiment microlensing data. The recent refined de Sitter swampland conjecture may support such a multi-phase inflationary scenario with hierarchical mass PBHs as a transition signal of each inflationary phase.