Do you want to publish a course? Click here

Centrality in dynamic competition networks

93   0   0.0 ( 0 )
 Added by Anthony Bonato
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Competition networks are formed via adversarial interactions between actors. The Dynamic Competition Hypothesis predicts that influential actors in competition networks should have a large number of common out-neighbors with many other nodes. We empirically study this idea as a centrality score and find the measure predictive of importance in several real-world networks including food webs, conflict networks, and voting data from Survivor.



rate research

Read More

There is an ever-increasing interest in investigating dynamics in time-varying graphs (TVGs). Nevertheless, so far, the notion of centrality in TVG scenarios usually refers to metrics that assess the relative importance of nodes along the temporal evolution of the dynamic complex network. For some TVG scenarios, however, more important than identifying the central nodes under a given node centrality definition is identifying the key time instants for taking certain actions. In this paper, we thus introduce and investigate the notion of time centrality in TVGs. Analogously to node centrality, time centrality evaluates the relative importance of time instants in dynamic complex networks. In this context, we present two time centrality metrics related to diffusion processes. We evaluate the two defined metrics using both a real-world dataset representing an in-person contact dynamic network and a synthetically generated randomized TVG. We validate the concept of time centrality showing that diffusion starting at the best classified time instants (i.e. the most central ones), according to our metrics, can perform a faster and more efficient diffusion process.
We consider social networks of competing agents that evolve dynamically over time. Such dynamic competition networks are directed, where a directed edge from nodes $u$ to $v$ corresponds a negative social interaction. We present a novel hypothesis that serves as a predictive tool to uncover alliances and leaders within dynamic competition networks. Our focus is in the present study is to validate it on competitive networks arising from social game shows such as Survivor and Big Brother.
With its origin in sociology, Social Network Analysis (SNA), quickly emerged and spread to other areas of research, including anthropology, biology, information science, organizational studies, political science, and computer science. Being its objective the investigation of social structures through the use of networks and graph theory, Social Network Analysis is, nowadays, an important research area in several domains. Social Network Analysis cope with different problems namely network metrics, models, visualization and information spreading, each one with several approaches, methods and algorithms. One of the critical areas of Social Network Analysis involves the calculation of different centrality measures (i.e.: the most important vertices within a graph). Today, the challenge is how to do this fast and efficiently, as many increasingly larger datasets are available. Recently, the need to apply such centrality algorithms to non static networks (i.e.: networks that evolve over time) is also a new challenge. Incremental and dynam
Understanding the network structure, and finding out the influential nodes is a challenging issue in the large networks. Identifying the most influential nodes in the network can be useful in many applications like immunization of nodes in case of epidemic spreading, during intentional attacks on complex networks. A lot of research is done to devise centrality measures which could efficiently identify the most influential nodes in the network. There are two major approaches to the problem: On one hand, deterministic strategies that exploit knowledge about the overall network topology in order to find the influential nodes, while on the other end, random strategies are completely agnostic about the network structure. Centrality measures that can deal with a limited knowledge of the network structure are required. Indeed, in practice, information about the global structure of the overall network is rarely available or hard to acquire. Even if available, the structure of the network might be too large that it is too much computationally expensive to calculate global centrality measures. To that end, a centrality measure is proposed that requires information only at the community level to identify the influential nodes in the network. Indeed, most of the real-world networks exhibit a community structure that can be exploited efficiently to discover the influential nodes. We performed a comparative evaluation of prominent global deterministic strategies together with stochastic strategies with an available and the proposed deterministic community-based strategy. Effectiveness of the proposed method is evaluated by performing experiments on synthetic and real-world networks with community structure in the case of immunization of nodes for epidemic control.
Dynamic networks, also called network streams, are an important data representation that applies to many real-world domains. Many sets of network data such as e-mail networks, social networks, or internet traffic networks are best represented by a dynamic network due to the temporal component of the data. One important application in the domain of dynamic network analysis is anomaly detection. Here the task is to identify points in time where the network exhibits behavior radically different from a typical time, either due to some event (like the failure of machines in a computer network) or a shift in the network properties. This problem is made more difficult by the fluid nature of what is considered normal network behavior. The volume of traffic on a network, for example, can change over the course of a month or even vary based on the time of the day without being considered unusual. Anomaly detection tests using traditional network statistics have difficulty in these scenarios due to their Density Dependence: as the volume of edges changes the value of the statistics changes as well making it difficult to determine if the change in signal is due to the traffic volume or due to some fundamental shift in the behavior of the network. To more accurately detect anomalies in dynamic networks, we introduce the concept of Density-Consistent network statistics. On synthetically generated graphs anomaly detectors using these statistics show a a 20-400% improvement in the recall when distinguishing graphs drawn from different distributions. When applied to several real datasets Density-Consistent statistics recover multiple network events which standard statistics failed to find.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا